{"title":"The tryptophan-aspartate (WD) repeat domain of bovine Coronin-1A promotes mycobacterial survival by inhibiting calcium signaling-mediated phagosome-lysosome fusion.","authors":"Jing Yang, Zhunan Li, Aicong Li, Yayi Liu, Xinyan Zhang, Yong Zhang, Yuanpeng Gao","doi":"10.1186/s13567-025-01471-6","DOIUrl":null,"url":null,"abstract":"<p><p>Bovine tuberculosis is a chronic consumptive zoonosis, causing significant economic losses and critical public health risks. Coronin-1A is a host cytoskeleton-associated protein that is crucial for understanding the inhibition of phagosome-lysosome fusion by Mycobacterium tuberculosis (M.tb) to evade host innate immune clearance. However, the involvement of bovine Coronin-1A (bCoronin-1A) in M.tb infection and whether it can be manipulated so as to enhance host resistance against bovine tuberculosis remains to be seen. Here, we explored the role of bCoronin-1A in phagosome-lysosome fusion in M.tb-infected macrophages. We found that bCoronin-1A was upregulated at both the transcriptional and protein levels following M.tb infection of embryonic bovine lung (EBL) cells. Notably, bCoronin-1A was recruited to M.tb-containing phagosomes where it hindered phagosome-lysosome fusion, leading to increased intracellular mycobacterial survival. Further investigation revealed that mycobacterial lipoamide dehydrogenase C (LpdC) interacted with a single tryptophan-aspartate (WD) unit within the WD repeat domain of bCoronin-1A to sequester it on the phagosomes. The WD repeat domain mediated a decrease in intracellular calcium levels, which reduced levels of calmodulin-dependent kinase II (CaMKII) and its activated forms, thereby inhibiting lysosomal delivery. Overall, our findings revealed that bCoronin-1A had a critical impact on mycobacterial survival in macrophages by inhibiting calcium-mediated phagosome-lysosome fusion. This suggests that targeting bCoronin-1A as a key factor influencing mycobacterial survival may be an effective breeding strategy to develop tuberculosis-resistant dairy cows.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"33"},"PeriodicalIF":3.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806767/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01471-6","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Bovine tuberculosis is a chronic consumptive zoonosis, causing significant economic losses and critical public health risks. Coronin-1A is a host cytoskeleton-associated protein that is crucial for understanding the inhibition of phagosome-lysosome fusion by Mycobacterium tuberculosis (M.tb) to evade host innate immune clearance. However, the involvement of bovine Coronin-1A (bCoronin-1A) in M.tb infection and whether it can be manipulated so as to enhance host resistance against bovine tuberculosis remains to be seen. Here, we explored the role of bCoronin-1A in phagosome-lysosome fusion in M.tb-infected macrophages. We found that bCoronin-1A was upregulated at both the transcriptional and protein levels following M.tb infection of embryonic bovine lung (EBL) cells. Notably, bCoronin-1A was recruited to M.tb-containing phagosomes where it hindered phagosome-lysosome fusion, leading to increased intracellular mycobacterial survival. Further investigation revealed that mycobacterial lipoamide dehydrogenase C (LpdC) interacted with a single tryptophan-aspartate (WD) unit within the WD repeat domain of bCoronin-1A to sequester it on the phagosomes. The WD repeat domain mediated a decrease in intracellular calcium levels, which reduced levels of calmodulin-dependent kinase II (CaMKII) and its activated forms, thereby inhibiting lysosomal delivery. Overall, our findings revealed that bCoronin-1A had a critical impact on mycobacterial survival in macrophages by inhibiting calcium-mediated phagosome-lysosome fusion. This suggests that targeting bCoronin-1A as a key factor influencing mycobacterial survival may be an effective breeding strategy to develop tuberculosis-resistant dairy cows.
期刊介绍:
Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.