Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.).

IF 5.3 2区 生物学 Q1 PLANT SCIENCES
Valiollah Mohammadi, Ahmad Rezaeizadeh, Behnam Mondak, Abdolrahman Rasoulnia, José Domínguez-Figueroa, Laura Carrillo, Gara Romero-Hernandez, Joaquin Medina
{"title":"Unraveling the role of autophagy and antioxidants in anther and pistil responses to heat stress in rapeseed (Brassica napus L.).","authors":"Valiollah Mohammadi, Ahmad Rezaeizadeh, Behnam Mondak, Abdolrahman Rasoulnia, José Domínguez-Figueroa, Laura Carrillo, Gara Romero-Hernandez, Joaquin Medina","doi":"10.1007/s00299-025-03437-6","DOIUrl":null,"url":null,"abstract":"<p><strong>Key message: </strong>Enhanced antioxidant enzymes activity, particularly superoxide dismutase and catalase, along with autophagy process in reproductive organs, can improve the resilience of rapeseed to heat stress, thereby securing crop yield in the face of global warming. Climate change and global warming have increasingly influenced yield and quality of rapeseed (Brassica napus) almost all across the world. The response of reproductive organs to high-temperature stress was studied in two rapeseed varieties, SAFI5 and DH13 with contrasting levels of heat stress tolerance. Pollen germination, viability, and seed set showed a significant reduction in the heat-sensitive variety (DH13). Superoxide quantification revealed higher accumulation in heat-sensitive variety, leading to decreased seed formation and floret fertility most probably due to declined pollen viability and stigma receptivity. Further microscopic analysis of the anther and pistil demonstrated a significant overlay between the damaged areas and the location of O<sub>2</sub><sup>-</sup> accumulation. The sensitive variety showed higher O<sub>2</sub><sup>-</sup> accumulation and a wider damage area than the tolerant one, suggesting that superoxide could incapacitate anther and pistil due to structural injury. Moreover, the activity levels and expression of superoxide dismutase and catalase antioxidant enzymes were significantly higher in the anther and pistil of the tolerant variety. Histochemical analysis also indicated markedly higher autophagosome formation in tolerant variety's anther and pistil. Consistently, the expression levels of autophagy and ubiquitin-proteasome system (UPS)-related genes including BnATG8d, BnEXO70B, BnATl1 4A, and BnNBR1, as well as ubiquitin-activating enzyme E1, were higher in both reproductive organs of the tolerant variety. Interestingly, the areas of autophagosome formation overlapped with the areas in which higher superoxide accumulation and structural changes happened, suggesting a specific role of autophagy in oxidative stress response.</p>","PeriodicalId":20204,"journal":{"name":"Plant Cell Reports","volume":"44 2","pages":"51"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11805782/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Cell Reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s00299-025-03437-6","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Key message: Enhanced antioxidant enzymes activity, particularly superoxide dismutase and catalase, along with autophagy process in reproductive organs, can improve the resilience of rapeseed to heat stress, thereby securing crop yield in the face of global warming. Climate change and global warming have increasingly influenced yield and quality of rapeseed (Brassica napus) almost all across the world. The response of reproductive organs to high-temperature stress was studied in two rapeseed varieties, SAFI5 and DH13 with contrasting levels of heat stress tolerance. Pollen germination, viability, and seed set showed a significant reduction in the heat-sensitive variety (DH13). Superoxide quantification revealed higher accumulation in heat-sensitive variety, leading to decreased seed formation and floret fertility most probably due to declined pollen viability and stigma receptivity. Further microscopic analysis of the anther and pistil demonstrated a significant overlay between the damaged areas and the location of O2- accumulation. The sensitive variety showed higher O2- accumulation and a wider damage area than the tolerant one, suggesting that superoxide could incapacitate anther and pistil due to structural injury. Moreover, the activity levels and expression of superoxide dismutase and catalase antioxidant enzymes were significantly higher in the anther and pistil of the tolerant variety. Histochemical analysis also indicated markedly higher autophagosome formation in tolerant variety's anther and pistil. Consistently, the expression levels of autophagy and ubiquitin-proteasome system (UPS)-related genes including BnATG8d, BnEXO70B, BnATl1 4A, and BnNBR1, as well as ubiquitin-activating enzyme E1, were higher in both reproductive organs of the tolerant variety. Interestingly, the areas of autophagosome formation overlapped with the areas in which higher superoxide accumulation and structural changes happened, suggesting a specific role of autophagy in oxidative stress response.

揭示自噬和抗氧化剂在油菜花药和雌蕊对热胁迫反应中的作用。
关键信息:提高抗氧化酶活性,特别是超氧化物歧化酶和过氧化氢酶的活性,以及生殖器官的自噬过程,可以提高油菜籽对热胁迫的适应能力,从而在全球变暖的情况下确保作物产量。气候变化和全球变暖对世界各地油菜产量和品质的影响越来越大。以耐热性不同的两个油菜籽品种SAFI5和DH13为材料,研究了其生殖器官对高温胁迫的响应。热敏感品种(DH13)花粉萌发、活力和结实率显著降低。超氧化物定量分析显示,热敏品种的超氧化物积累量较高,导致种子形成和小花育性下降,这很可能是由于花粉活力和柱头接受性下降所致。进一步对花药和雌蕊的显微分析表明,损伤部位和氧积累部位之间存在明显的覆盖。与耐氧品种相比,敏感品种的O2积累量更高,损伤范围更广,表明超氧化物可能导致花药和雌蕊因结构损伤而丧失能力。耐药品种花药和雌蕊中超氧化物歧化酶和过氧化氢酶抗氧化酶的活性水平和表达量显著高于耐药品种。组织化学分析还表明,耐药品种的花药和雌蕊中自噬体的形成明显增加。与此同时,自噬和泛素蛋白酶体系统(UPS)相关基因BnATG8d、BnEXO70B、BnATl1 4A和BnNBR1以及泛素激活酶E1在耐受性品种的两个生殖器官中的表达水平均较高。有趣的是,自噬体形成的区域与超氧化物积累和结构变化发生的区域重叠,这表明自噬在氧化应激反应中起着特殊的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Plant Cell Reports
Plant Cell Reports 生物-植物科学
CiteScore
10.80
自引率
1.60%
发文量
135
审稿时长
3.2 months
期刊介绍: Plant Cell Reports publishes original, peer-reviewed articles on new advances in all aspects of plant cell science, plant genetics and molecular biology. Papers selected for publication contribute significant new advances to clearly identified technological problems and/or biological questions. The articles will prove relevant beyond the narrow topic of interest to a readership with broad scientific background. The coverage includes such topics as: - genomics and genetics - metabolism - cell biology - abiotic and biotic stress - phytopathology - gene transfer and expression - molecular pharming - systems biology - nanobiotechnology - genome editing - phenomics and synthetic biology The journal also publishes opinion papers, review and focus articles on the latest developments and new advances in research and technology in plant molecular biology and biotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信