A new GPU-based Monte Carlo code for helium ion therapy.

IF 2.7 3区 医学 Q3 ONCOLOGY
Shijun Li, Ning Gao, Bo Cheng, Junyi Liu, Yankui Chang, Xi Pei, Xie George Xu
{"title":"A new GPU-based Monte Carlo code for helium ion therapy.","authors":"Shijun Li, Ning Gao, Bo Cheng, Junyi Liu, Yankui Chang, Xi Pei, Xie George Xu","doi":"10.1007/s00066-024-02357-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This work presents an effort to extend the capabilities of the previously introduced GPU-based Monte Carlo code ARCHER for helium ion therapy.</p><p><strong>Methods: </strong>ARCHER performs helium ion transport simulations in voxelized geometry, covering kinetic energy levels up to 220 MeV/u. The physical processes are modeled using a class II condensed-history algorithm, considering ionization, energy straggling, multiple scattering, and elastic and inelastic nuclear interactions. A new nuclear-event-repeat algorithm is proposed to generate inelastic nuclear reaction products. Secondary protons, deuterons, tritons, and <sup>3</sup>He particles are tracked, while other particles either deposit their energy locally or are ignored. The code is developed under the compute unified device architecture (CUDA) platform to improve computational efficiency. Validations are conducted by benchmarking our code against TOPAS in different phantoms.</p><p><strong>Results: </strong>Dose distribution comparisons demonstrate strong agreement between our code and TOPAS. The mean point-by-point local relative errors in the region where the dose exceeds 10% of the maximum dose range from 0.25% to 1.31% for all phantoms. In the strict 1%/1 mm criterion, gamma passing rates for a head-neck case, chest case, and prostate case are 99.8%, 96.9%, and 99.6%, respectively. Except for the lung phantom, ARCHER takes less than 10 s to simulate 10 million primary helium ions using a single NVIDIA GeForce RTX 3080 card (NVIDIA Corporation, Santa Clara, USA), while TOPAS requires several minutes on a computational platform with two Intel Xeon Gold 6348 CPUs (Intel Corporation, Santa Clara, USA) with 56 cores.</p><p><strong>Conclusion: </strong>This work presents the development and benchmarking of the first GPU-based dose engine for helium ion therapy. The code has been proven to achieve high levels of accuracy and efficiency.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strahlentherapie und Onkologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00066-024-02357-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: This work presents an effort to extend the capabilities of the previously introduced GPU-based Monte Carlo code ARCHER for helium ion therapy.

Methods: ARCHER performs helium ion transport simulations in voxelized geometry, covering kinetic energy levels up to 220 MeV/u. The physical processes are modeled using a class II condensed-history algorithm, considering ionization, energy straggling, multiple scattering, and elastic and inelastic nuclear interactions. A new nuclear-event-repeat algorithm is proposed to generate inelastic nuclear reaction products. Secondary protons, deuterons, tritons, and 3He particles are tracked, while other particles either deposit their energy locally or are ignored. The code is developed under the compute unified device architecture (CUDA) platform to improve computational efficiency. Validations are conducted by benchmarking our code against TOPAS in different phantoms.

Results: Dose distribution comparisons demonstrate strong agreement between our code and TOPAS. The mean point-by-point local relative errors in the region where the dose exceeds 10% of the maximum dose range from 0.25% to 1.31% for all phantoms. In the strict 1%/1 mm criterion, gamma passing rates for a head-neck case, chest case, and prostate case are 99.8%, 96.9%, and 99.6%, respectively. Except for the lung phantom, ARCHER takes less than 10 s to simulate 10 million primary helium ions using a single NVIDIA GeForce RTX 3080 card (NVIDIA Corporation, Santa Clara, USA), while TOPAS requires several minutes on a computational platform with two Intel Xeon Gold 6348 CPUs (Intel Corporation, Santa Clara, USA) with 56 cores.

Conclusion: This work presents the development and benchmarking of the first GPU-based dose engine for helium ion therapy. The code has been proven to achieve high levels of accuracy and efficiency.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.70
自引率
12.90%
发文量
141
审稿时长
3-8 weeks
期刊介绍: Strahlentherapie und Onkologie, published monthly, is a scientific journal that covers all aspects of oncology with focus on radiooncology, radiation biology and radiation physics. The articles are not only of interest to radiooncologists but to all physicians interested in oncology, to radiation biologists and radiation physicists. The journal publishes original articles, review articles and case studies that are peer-reviewed. It includes scientific short communications as well as a literature review with annotated articles that inform the reader on new developments in the various disciplines concerned and hence allow for a sound overview on the latest results in radiooncology research. Founded in 1912, Strahlentherapie und Onkologie is the oldest oncological journal in the world. Today, contributions are published in English and German. All articles have English summaries and legends. The journal is the official publication of several scientific radiooncological societies and publishes the relevant communications of these societies.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信