Shijun Li, Ning Gao, Bo Cheng, Junyi Liu, Yankui Chang, Xi Pei, Xie George Xu
{"title":"A new GPU-based Monte Carlo code for helium ion therapy.","authors":"Shijun Li, Ning Gao, Bo Cheng, Junyi Liu, Yankui Chang, Xi Pei, Xie George Xu","doi":"10.1007/s00066-024-02357-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>This work presents an effort to extend the capabilities of the previously introduced GPU-based Monte Carlo code ARCHER for helium ion therapy.</p><p><strong>Methods: </strong>ARCHER performs helium ion transport simulations in voxelized geometry, covering kinetic energy levels up to 220 MeV/u. The physical processes are modeled using a class II condensed-history algorithm, considering ionization, energy straggling, multiple scattering, and elastic and inelastic nuclear interactions. A new nuclear-event-repeat algorithm is proposed to generate inelastic nuclear reaction products. Secondary protons, deuterons, tritons, and <sup>3</sup>He particles are tracked, while other particles either deposit their energy locally or are ignored. The code is developed under the compute unified device architecture (CUDA) platform to improve computational efficiency. Validations are conducted by benchmarking our code against TOPAS in different phantoms.</p><p><strong>Results: </strong>Dose distribution comparisons demonstrate strong agreement between our code and TOPAS. The mean point-by-point local relative errors in the region where the dose exceeds 10% of the maximum dose range from 0.25% to 1.31% for all phantoms. In the strict 1%/1 mm criterion, gamma passing rates for a head-neck case, chest case, and prostate case are 99.8%, 96.9%, and 99.6%, respectively. Except for the lung phantom, ARCHER takes less than 10 s to simulate 10 million primary helium ions using a single NVIDIA GeForce RTX 3080 card (NVIDIA Corporation, Santa Clara, USA), while TOPAS requires several minutes on a computational platform with two Intel Xeon Gold 6348 CPUs (Intel Corporation, Santa Clara, USA) with 56 cores.</p><p><strong>Conclusion: </strong>This work presents the development and benchmarking of the first GPU-based dose engine for helium ion therapy. The code has been proven to achieve high levels of accuracy and efficiency.</p>","PeriodicalId":21998,"journal":{"name":"Strahlentherapie und Onkologie","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Strahlentherapie und Onkologie","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s00066-024-02357-w","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Purpose: This work presents an effort to extend the capabilities of the previously introduced GPU-based Monte Carlo code ARCHER for helium ion therapy.
Methods: ARCHER performs helium ion transport simulations in voxelized geometry, covering kinetic energy levels up to 220 MeV/u. The physical processes are modeled using a class II condensed-history algorithm, considering ionization, energy straggling, multiple scattering, and elastic and inelastic nuclear interactions. A new nuclear-event-repeat algorithm is proposed to generate inelastic nuclear reaction products. Secondary protons, deuterons, tritons, and 3He particles are tracked, while other particles either deposit their energy locally or are ignored. The code is developed under the compute unified device architecture (CUDA) platform to improve computational efficiency. Validations are conducted by benchmarking our code against TOPAS in different phantoms.
Results: Dose distribution comparisons demonstrate strong agreement between our code and TOPAS. The mean point-by-point local relative errors in the region where the dose exceeds 10% of the maximum dose range from 0.25% to 1.31% for all phantoms. In the strict 1%/1 mm criterion, gamma passing rates for a head-neck case, chest case, and prostate case are 99.8%, 96.9%, and 99.6%, respectively. Except for the lung phantom, ARCHER takes less than 10 s to simulate 10 million primary helium ions using a single NVIDIA GeForce RTX 3080 card (NVIDIA Corporation, Santa Clara, USA), while TOPAS requires several minutes on a computational platform with two Intel Xeon Gold 6348 CPUs (Intel Corporation, Santa Clara, USA) with 56 cores.
Conclusion: This work presents the development and benchmarking of the first GPU-based dose engine for helium ion therapy. The code has been proven to achieve high levels of accuracy and efficiency.
期刊介绍:
Strahlentherapie und Onkologie, published monthly, is a scientific journal that covers all aspects of oncology with focus on radiooncology, radiation biology and radiation physics. The articles are not only of interest to radiooncologists but to all physicians interested in oncology, to radiation biologists and radiation physicists. The journal publishes original articles, review articles and case studies that are peer-reviewed. It includes scientific short communications as well as a literature review with annotated articles that inform the reader on new developments in the various disciplines concerned and hence allow for a sound overview on the latest results in radiooncology research.
Founded in 1912, Strahlentherapie und Onkologie is the oldest oncological journal in the world. Today, contributions are published in English and German. All articles have English summaries and legends. The journal is the official publication of several scientific radiooncological societies and publishes the relevant communications of these societies.