Yang Tian, Ming Jin, Nanwei Ye, Zhenzhen Gao, Yuancong Jiang, Sheng Yan
{"title":"Mesenchymal stem cells-derived exosomes attenuate mouse non-heart-beating liver transplantation through Mir-17-5p-regulated Kupffer cell pyroptosis.","authors":"Yang Tian, Ming Jin, Nanwei Ye, Zhenzhen Gao, Yuancong Jiang, Sheng Yan","doi":"10.1186/s13287-025-04169-w","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Liver transplantation is the most effective treatment for end-stage liver disease. However, the shortage of donor livers has become a significant obstacle to the advancement of liver transplantation. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been extensively investigated in liver diseases. However, the underlying mechanisms of how they can protect organ donation after cardiac death (DCD) livers remain unclear.</p><p><strong>Methods: </strong>In this study, an arterialized mouse non-heart-beating (NHB) liver transplantation model was used to investigate the effect of MSCs-Exo on NHB liver transplantation. The survival rates, histology, pro-inflammatory cytokine and chemokine expression, and underlying mechanisms were investigated.</p><p><strong>Results: </strong>The infusion of MSCs-Exo reduced the injury to DCD liver graft tissue. In vitro and in vivo experiments demonstrated that MSCs-Exo could inhibit hydrogen peroxide-induced pyroptosis of Kupffer cells. We found that miR-17-5p was significantly abundant in MSCs-Exo, targeting and regulating the TXNIP expression. This action inhibited NLRP3-mediated pyroptosis of Kupffer cells through the classical Caspase1-dependent pathway, alleviating DCD liver graft injury.</p><p><strong>Conclusion: </strong>Our study elucidated a protective role for MSCs-Exo in a NHB liver transplantation model. This mechanism provides a theoretical basis and new strategies for the clinical application of MSCs-Exo to improve liver graft quality and alleviate the organ shortage in liver transplantation.</p>","PeriodicalId":21876,"journal":{"name":"Stem Cell Research & Therapy","volume":"16 1","pages":"57"},"PeriodicalIF":7.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806715/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Research & Therapy","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s13287-025-04169-w","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Liver transplantation is the most effective treatment for end-stage liver disease. However, the shortage of donor livers has become a significant obstacle to the advancement of liver transplantation. Mesenchymal stem cells-derived exosomes (MSCs-Exo) have been extensively investigated in liver diseases. However, the underlying mechanisms of how they can protect organ donation after cardiac death (DCD) livers remain unclear.
Methods: In this study, an arterialized mouse non-heart-beating (NHB) liver transplantation model was used to investigate the effect of MSCs-Exo on NHB liver transplantation. The survival rates, histology, pro-inflammatory cytokine and chemokine expression, and underlying mechanisms were investigated.
Results: The infusion of MSCs-Exo reduced the injury to DCD liver graft tissue. In vitro and in vivo experiments demonstrated that MSCs-Exo could inhibit hydrogen peroxide-induced pyroptosis of Kupffer cells. We found that miR-17-5p was significantly abundant in MSCs-Exo, targeting and regulating the TXNIP expression. This action inhibited NLRP3-mediated pyroptosis of Kupffer cells through the classical Caspase1-dependent pathway, alleviating DCD liver graft injury.
Conclusion: Our study elucidated a protective role for MSCs-Exo in a NHB liver transplantation model. This mechanism provides a theoretical basis and new strategies for the clinical application of MSCs-Exo to improve liver graft quality and alleviate the organ shortage in liver transplantation.
期刊介绍:
Stem Cell Research & Therapy serves as a leading platform for translational research in stem cell therapies. This international, peer-reviewed journal publishes high-quality open-access research articles, with a focus on basic, translational, and clinical research in stem cell therapeutics and regenerative therapies. Coverage includes animal models and clinical trials. Additionally, the journal offers reviews, viewpoints, commentaries, and reports.