ERK phosphorylates ESRRB to regulate the self-renewal and differentiation of mouse embryonic stem cells.

IF 5.9 2区 医学 Q1 CELL & TISSUE ENGINEERING
Xiaowei Duan, Qingye Zhang, Lulu Gao, Bin Ling, Xiaoling Du, Lingyi Chen
{"title":"ERK phosphorylates ESRRB to regulate the self-renewal and differentiation of mouse embryonic stem cells.","authors":"Xiaowei Duan, Qingye Zhang, Lulu Gao, Bin Ling, Xiaoling Du, Lingyi Chen","doi":"10.1016/j.stemcr.2025.102397","DOIUrl":null,"url":null,"abstract":"<p><p>MEK (mitogen-activated protein kinase) inhibitor is widely used for culturing pluripotent stem cells, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs), implying a dual role of MEK/ERK (extracellular signal-regulated kinase) signaling in pluripotency maintenance. To better understand the mechanism of MEK/ERK in pluripotency maintenance, we performed quantitative phosphoproteomic analysis and identified 169 ERK substrates, which are enriched for proteins involved in stem cell population maintenance, embryonic development, and mitotic cell cycle. Next, we demonstrated that ERK phosphorylates a well-known pluripotency factor ESRRB on Serine 42 and 43. Dephosphorylation of ESRRB facilitates its binding to pluripotency genes, thus enhancing its activity to maintain pluripotency. In contrast, phosphorylation of ESRRB increases its binding to extraembryonic endoderm (XEN) genes, consequently promoting XEN differentiation of ESCs. Altogether, our study reveals that ERK may regulate ESC self-renewal and differentiation by phosphorylating multiple substrates, including ESRRB, which affects both ESC self-renewal and XEN differentiation.</p>","PeriodicalId":21885,"journal":{"name":"Stem Cell Reports","volume":" ","pages":"102397"},"PeriodicalIF":5.9000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Stem Cell Reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.stemcr.2025.102397","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

MEK (mitogen-activated protein kinase) inhibitor is widely used for culturing pluripotent stem cells, while prolonged MEK inhibition compromises the developmental potential of mouse embryonic stem cells (ESCs), implying a dual role of MEK/ERK (extracellular signal-regulated kinase) signaling in pluripotency maintenance. To better understand the mechanism of MEK/ERK in pluripotency maintenance, we performed quantitative phosphoproteomic analysis and identified 169 ERK substrates, which are enriched for proteins involved in stem cell population maintenance, embryonic development, and mitotic cell cycle. Next, we demonstrated that ERK phosphorylates a well-known pluripotency factor ESRRB on Serine 42 and 43. Dephosphorylation of ESRRB facilitates its binding to pluripotency genes, thus enhancing its activity to maintain pluripotency. In contrast, phosphorylation of ESRRB increases its binding to extraembryonic endoderm (XEN) genes, consequently promoting XEN differentiation of ESCs. Altogether, our study reveals that ERK may regulate ESC self-renewal and differentiation by phosphorylating multiple substrates, including ESRRB, which affects both ESC self-renewal and XEN differentiation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Stem Cell Reports
Stem Cell Reports CELL & TISSUE ENGINEERING-CELL BIOLOGY
CiteScore
10.50
自引率
1.70%
发文量
200
审稿时长
28 weeks
期刊介绍: Stem Cell Reports publishes high-quality, peer-reviewed research presenting conceptual or practical advances across the breadth of stem cell research and its applications to medicine. Our particular focus on shorter, single-point articles, timely publication, strong editorial decision-making and scientific input by leaders in the field and a "scoop protection" mechanism are reasons to submit your best papers.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信