Antibiotic-associated changes in Akkermansia muciniphila alter its effects on host metabolic health.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Yumin Han, Teh Min Teng, Juwon Han, Heenam Stanley Kim
{"title":"Antibiotic-associated changes in Akkermansia muciniphila alter its effects on host metabolic health.","authors":"Yumin Han, Teh Min Teng, Juwon Han, Heenam Stanley Kim","doi":"10.1186/s40168-024-02023-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Altered gut microbiota has emerged as a major contributing factor to the etiology of chronic conditions in humans. Antibiotic exposure, historically dating back to the mass production of penicillin in the early 1940s, has been proposed as a primary contributor to the cumulative alteration of microbiota over generations. However, the mechanistic link between the antibiotics-altered microbiota and chronic conditions remains unclear.</p><p><strong>Results: </strong>In this study, we discovered that variants of the key beneficial gut microbe, Akkermansia muciniphila, were selected upon exposure to penicillin. These variants had mutations in the promoter of a TEM-type β-lactamase gene or pur genes encoding the de novo purine biosynthesis pathway, and they exhibited compromised abilities to mitigate host obesity in a murine model. Notably, variants of A. muciniphila are prevalent in the human microbiome worldwide.</p><p><strong>Conclusions: </strong>These findings highlight a previously unknown mechanism through which antibiotics influence host health by affecting the beneficial capacities of the key gut microbes. Furthermore, the global prevalence of A. muciniphila variants raises the possibility that these variants contribute to global epidemics of chronic conditions, warranting further investigations in human populations. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"48"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11804010/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-024-02023-4","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Altered gut microbiota has emerged as a major contributing factor to the etiology of chronic conditions in humans. Antibiotic exposure, historically dating back to the mass production of penicillin in the early 1940s, has been proposed as a primary contributor to the cumulative alteration of microbiota over generations. However, the mechanistic link between the antibiotics-altered microbiota and chronic conditions remains unclear.

Results: In this study, we discovered that variants of the key beneficial gut microbe, Akkermansia muciniphila, were selected upon exposure to penicillin. These variants had mutations in the promoter of a TEM-type β-lactamase gene or pur genes encoding the de novo purine biosynthesis pathway, and they exhibited compromised abilities to mitigate host obesity in a murine model. Notably, variants of A. muciniphila are prevalent in the human microbiome worldwide.

Conclusions: These findings highlight a previously unknown mechanism through which antibiotics influence host health by affecting the beneficial capacities of the key gut microbes. Furthermore, the global prevalence of A. muciniphila variants raises the possibility that these variants contribute to global epidemics of chronic conditions, warranting further investigations in human populations. Video Abstract.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信