Interactions within higher-order antibiotic combinations do not influence the rate of adaptation in bacteria.

IF 3.1 2区 环境科学与生态学 Q2 ECOLOGY
Evolution Pub Date : 2025-02-07 DOI:10.1093/evolut/qpaf023
Natalie Ann Lozano-Huntelman, Emoni Cook, Austin Bullivant, Nick Ida, April Zhou, Sada Boyd, Pamela J Yeh
{"title":"Interactions within higher-order antibiotic combinations do not influence the rate of adaptation in bacteria.","authors":"Natalie Ann Lozano-Huntelman, Emoni Cook, Austin Bullivant, Nick Ida, April Zhou, Sada Boyd, Pamela J Yeh","doi":"10.1093/evolut/qpaf023","DOIUrl":null,"url":null,"abstract":"<p><p>The prevalence and strength of antibiotic resistance has led to an ongoing battle between the development of new treatments and the evolution of resistance. Combining multiple drugs simultaneously is a potential solution for combating antibiotic resistance. However, this approach introduces new factors that must be considered, including the influence of drug interactions on the rate of resistance evolution. When antibiotics are used in combination, their effects can be additive, synergistic, or antagonistic. In this study, we investigated the effect of higher-order interactions involving three drugs on resistance evolution in Staphylococcus epidermidis. Previous studies have shown that synergistic interactions can increase the adaptation rate. However, the effects of higher-order interactions on rates of adaptation are unclear. We investigated the adaptation of Staphylococcus epidermidis to single-, two-, and three-drug environments to assess how interactions within drug combinations influence the rate of adaptation. We analyzed both the overall interaction and emergent interaction, the latter being a unique interaction that occurs in three-drug combinations due to the presence of all three drugs, rather than simply strong pairwise interactions. Our results show that neither the overall interactions nor the emergent interactions affect adaptation rates.</p>","PeriodicalId":12082,"journal":{"name":"Evolution","volume":" ","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1093/evolut/qpaf023","RegionNum":2,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ECOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

The prevalence and strength of antibiotic resistance has led to an ongoing battle between the development of new treatments and the evolution of resistance. Combining multiple drugs simultaneously is a potential solution for combating antibiotic resistance. However, this approach introduces new factors that must be considered, including the influence of drug interactions on the rate of resistance evolution. When antibiotics are used in combination, their effects can be additive, synergistic, or antagonistic. In this study, we investigated the effect of higher-order interactions involving three drugs on resistance evolution in Staphylococcus epidermidis. Previous studies have shown that synergistic interactions can increase the adaptation rate. However, the effects of higher-order interactions on rates of adaptation are unclear. We investigated the adaptation of Staphylococcus epidermidis to single-, two-, and three-drug environments to assess how interactions within drug combinations influence the rate of adaptation. We analyzed both the overall interaction and emergent interaction, the latter being a unique interaction that occurs in three-drug combinations due to the presence of all three drugs, rather than simply strong pairwise interactions. Our results show that neither the overall interactions nor the emergent interactions affect adaptation rates.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Evolution
Evolution 环境科学-进化生物学
CiteScore
5.00
自引率
9.10%
发文量
0
审稿时长
3-6 weeks
期刊介绍: Evolution, published for the Society for the Study of Evolution, is the premier publication devoted to the study of organic evolution and the integration of the various fields of science concerned with evolution. The journal presents significant and original results that extend our understanding of evolutionary phenomena and processes.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信