Pseudoalteromonas agarivorans-derived Novel Ulvan Lyase of Polysaccharide Lyase Family 40: Potential Application of Ulvan and Partially Hydrolyzed products in Cosmetic Industry.
IF 3.2 4区 生物学Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Navindu Dinara Gajanayaka, Eunyoung Jo, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Sachithra Amarin Hettiarachchi, Sithumini Wijewickrama, Gun-Hoo Park, Chulhong Oh, Youngdeuk Lee
{"title":"Pseudoalteromonas agarivorans-derived Novel Ulvan Lyase of Polysaccharide Lyase Family 40: Potential Application of Ulvan and Partially Hydrolyzed products in Cosmetic Industry.","authors":"Navindu Dinara Gajanayaka, Eunyoung Jo, Minthari Sakethanika Bandara, Svini Dileepa Marasinghe, Sachithra Amarin Hettiarachchi, Sithumini Wijewickrama, Gun-Hoo Park, Chulhong Oh, Youngdeuk Lee","doi":"10.1093/jimb/kuaf004","DOIUrl":null,"url":null,"abstract":"<p><p>Ulvan is a complex sulfated polysaccharide in the cell walls of green algae with extensive applications in food, pharmaceutical, and agricultural industries, prompting extensive studies on ulvan, its oligosaccharides, monosaccharides, and cost-effective depolymerization methods. Our primary objectives were to investigate novel ulvan-utilizing marine bacteria, perform recombinant engineering of genes responsible for ulvan depolymerization, and determine their potential industrial applications. Samples were collected from Jeju Island, which is a South Korean region with significant excessive green algal growth, especially that of Ulva species. The marine bacterium Pseudoalteromonas agarivorans efficiently uses ulvan as its primary carbon source, indicating its potential for ulvan degradation. Thorough whole genome sequencing the paul40 gene, which is a polysaccharide lyase family 40 (PL40) member, was identified and subsequently engineered into the pET-16b vector for expression as a His-tagged 95 kDa fusion protein. The ulvan depolymerization process was evaluated and confirmed using various analytical techniques including dinitrosalicylic acid assay, thin-layer chromatography, and gel permeation chromatography. Optimal enzyme activity occurred at 35°C, pH 8.0 in phosphate buffer, and 2.5 mM of NaCl. Furthermore, enzyme characterization and specific activity measurements were performed. This study is the first to report hyaluronidase and elastase inhibition by ulvan and its derivatives along with the characterization of an ulvan lyase enzyme from the PL40 family.</p>","PeriodicalId":16092,"journal":{"name":"Journal of Industrial Microbiology & Biotechnology","volume":" ","pages":""},"PeriodicalIF":3.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial Microbiology & Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1093/jimb/kuaf004","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Ulvan is a complex sulfated polysaccharide in the cell walls of green algae with extensive applications in food, pharmaceutical, and agricultural industries, prompting extensive studies on ulvan, its oligosaccharides, monosaccharides, and cost-effective depolymerization methods. Our primary objectives were to investigate novel ulvan-utilizing marine bacteria, perform recombinant engineering of genes responsible for ulvan depolymerization, and determine their potential industrial applications. Samples were collected from Jeju Island, which is a South Korean region with significant excessive green algal growth, especially that of Ulva species. The marine bacterium Pseudoalteromonas agarivorans efficiently uses ulvan as its primary carbon source, indicating its potential for ulvan degradation. Thorough whole genome sequencing the paul40 gene, which is a polysaccharide lyase family 40 (PL40) member, was identified and subsequently engineered into the pET-16b vector for expression as a His-tagged 95 kDa fusion protein. The ulvan depolymerization process was evaluated and confirmed using various analytical techniques including dinitrosalicylic acid assay, thin-layer chromatography, and gel permeation chromatography. Optimal enzyme activity occurred at 35°C, pH 8.0 in phosphate buffer, and 2.5 mM of NaCl. Furthermore, enzyme characterization and specific activity measurements were performed. This study is the first to report hyaluronidase and elastase inhibition by ulvan and its derivatives along with the characterization of an ulvan lyase enzyme from the PL40 family.
期刊介绍:
The Journal of Industrial Microbiology and Biotechnology is an international journal which publishes papers describing original research, short communications, and critical reviews in the fields of biotechnology, fermentation and cell culture, biocatalysis, environmental microbiology, natural products discovery and biosynthesis, marine natural products, metabolic engineering, genomics, bioinformatics, food microbiology, and other areas of applied microbiology