Improving stroke risk prediction by integrating XGBoost, optimized principal component analysis, and explainable artificial intelligence.

IF 3.3 3区 医学 Q2 MEDICAL INFORMATICS
Lesia Mochurad, Viktoriia Babii, Yuliia Boliubash, Yulianna Mochurad
{"title":"Improving stroke risk prediction by integrating XGBoost, optimized principal component analysis, and explainable artificial intelligence.","authors":"Lesia Mochurad, Viktoriia Babii, Yuliia Boliubash, Yulianna Mochurad","doi":"10.1186/s12911-025-02894-z","DOIUrl":null,"url":null,"abstract":"<p><p>The relevance of the study is due to the growing number of diseases of the cerebrovascular system, in particular stroke, which is one of the leading causes of disability and mortality in the world. To improve stroke risk prediction models in terms of efficiency and interpretability, we propose to integrate modern machine learning algorithms and data dimensionality reduction methods, in particular XGBoost and optimized principal component analysis (PCA), which provide data structuring and increase processing speed, especially for large datasets. For the first time, explainable artificial intelligence (XAI) is integrated into the PCA process, which increases transparency and interpretation, providing a better understanding of risk factors for medical professionals. The proposed approach was tested on two datasets, with accuracy of 95% and 98%. Cross-validation yielded an average value of 0.99, and high values of Matthew's correlation coefficient (MCC) metrics of 0.96 and Cohen's Kappa (CK) of 0.96 confirmed the generalizability and reliability of the model. The processing speed is increased threefold due to OpenMP parallelization, which makes it possible to apply it in practice. Thus, the proposed method is innovative and can potentially improve forecasting systems in the healthcare industry.</p>","PeriodicalId":9340,"journal":{"name":"BMC Medical Informatics and Decision Making","volume":"25 1","pages":"63"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"BMC Medical Informatics and Decision Making","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12911-025-02894-z","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICAL INFORMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

The relevance of the study is due to the growing number of diseases of the cerebrovascular system, in particular stroke, which is one of the leading causes of disability and mortality in the world. To improve stroke risk prediction models in terms of efficiency and interpretability, we propose to integrate modern machine learning algorithms and data dimensionality reduction methods, in particular XGBoost and optimized principal component analysis (PCA), which provide data structuring and increase processing speed, especially for large datasets. For the first time, explainable artificial intelligence (XAI) is integrated into the PCA process, which increases transparency and interpretation, providing a better understanding of risk factors for medical professionals. The proposed approach was tested on two datasets, with accuracy of 95% and 98%. Cross-validation yielded an average value of 0.99, and high values of Matthew's correlation coefficient (MCC) metrics of 0.96 and Cohen's Kappa (CK) of 0.96 confirmed the generalizability and reliability of the model. The processing speed is increased threefold due to OpenMP parallelization, which makes it possible to apply it in practice. Thus, the proposed method is innovative and can potentially improve forecasting systems in the healthcare industry.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.20
自引率
5.70%
发文量
297
审稿时长
1 months
期刊介绍: BMC Medical Informatics and Decision Making is an open access journal publishing original peer-reviewed research articles in relation to the design, development, implementation, use, and evaluation of health information technologies and decision-making for human health.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信