Yu Wang, Xuan Zhang, Weixue Wang, Yi Zhang, Joshua S Fleishman, Hongquan Wang
{"title":"cGAS-STING targeting offers therapy choice in lung diseases.","authors":"Yu Wang, Xuan Zhang, Weixue Wang, Yi Zhang, Joshua S Fleishman, Hongquan Wang","doi":"10.1186/s13062-025-00611-4","DOIUrl":null,"url":null,"abstract":"<p><p>Cyclic GMP/AMP (cGAMP) synthase (cGAS), along with the endoplasmic reticulum (ER)-associated stimulator of interferon genes (STING), are crucial elements of the type 1 interferon response. cGAS senses microbial DNA and self-DNA, labeling cGAS-STING as a crucial mechanism in autoimmunity, sterile inflammatory responses, and cellular senescence. However, chronic and aberrant activation of the cGAS-STING axis results in inflammatory and autoimmune diseases. cGAS-STING has emerged as a vital mechanism driving inflammation-related diseases, including lung diseases. Insights into the biology of the cGAS-STING pathway have enabled the discovery of small-molecule agents which have the potential to inhibit the cGAS-STING axis in lung diseases. In this review, we first outline the principal components of the cGAS-STING signaling cascade. Then, we discuss recent research that highlights general mechanisms by which cGAS-STING contributes to lung diseases. Then, we focus on summarizing a list of bioactive small-molecule compounds which inhibit the cGAS-STING pathway, reviewing their potential mechanisms.These review highlights a novel groundbreaking therapeutic possibilities through targeting cGAS-STING in lung diseases.</p>","PeriodicalId":9164,"journal":{"name":"Biology Direct","volume":"20 1","pages":"20"},"PeriodicalIF":5.7000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806777/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biology Direct","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s13062-025-00611-4","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Cyclic GMP/AMP (cGAMP) synthase (cGAS), along with the endoplasmic reticulum (ER)-associated stimulator of interferon genes (STING), are crucial elements of the type 1 interferon response. cGAS senses microbial DNA and self-DNA, labeling cGAS-STING as a crucial mechanism in autoimmunity, sterile inflammatory responses, and cellular senescence. However, chronic and aberrant activation of the cGAS-STING axis results in inflammatory and autoimmune diseases. cGAS-STING has emerged as a vital mechanism driving inflammation-related diseases, including lung diseases. Insights into the biology of the cGAS-STING pathway have enabled the discovery of small-molecule agents which have the potential to inhibit the cGAS-STING axis in lung diseases. In this review, we first outline the principal components of the cGAS-STING signaling cascade. Then, we discuss recent research that highlights general mechanisms by which cGAS-STING contributes to lung diseases. Then, we focus on summarizing a list of bioactive small-molecule compounds which inhibit the cGAS-STING pathway, reviewing their potential mechanisms.These review highlights a novel groundbreaking therapeutic possibilities through targeting cGAS-STING in lung diseases.
期刊介绍:
Biology Direct serves the life science research community as an open access, peer-reviewed online journal, providing authors and readers with an alternative to the traditional model of peer review. Biology Direct considers original research articles, hypotheses, comments, discovery notes and reviews in subject areas currently identified as those most conducive to the open review approach, primarily those with a significant non-experimental component.