Searching for the cellular underpinnings of the selective vulnerability to tauopathic insults in Alzheimer's disease.

IF 5.2 1区 生物学 Q1 BIOLOGY
Justin Torok, Pedro D Maia, Chaitali Anand, Ashish Raj
{"title":"Searching for the cellular underpinnings of the selective vulnerability to tauopathic insults in Alzheimer's disease.","authors":"Justin Torok, Pedro D Maia, Chaitali Anand, Ashish Raj","doi":"10.1038/s42003-025-07575-1","DOIUrl":null,"url":null,"abstract":"<p><p>Neurodegenerative diseases such as Alzheimer's disease exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion. However, the cellular underpinnings of regional vulnerability are poorly understood, in part because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical cells in the mouse, and then used these maps to identify general principles of cell-type-based selective vulnerability in PS19 mouse models. We found that hippocampal glutamatergic neurons as a whole were significantly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. We also identified oligodendrocytes as the single-most strongly negatively associated cell type. Further, cell-type distributions were more predictive of end-time-point tau pathology than AD-risk-gene expression. Using gene ontology analysis, we found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have elucidated cell-type correlates of tau deposition across mouse models of tauopathy, advancing our understanding of selective cellular vulnerability at a whole-brain level.</p>","PeriodicalId":10552,"journal":{"name":"Communications Biology","volume":"8 1","pages":"195"},"PeriodicalIF":5.2000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s42003-025-07575-1","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Neurodegenerative diseases such as Alzheimer's disease exhibit pathological changes in the brain that proceed in a stereotyped and regionally specific fashion. However, the cellular underpinnings of regional vulnerability are poorly understood, in part because whole-brain maps of a comprehensive collection of cell types have been inaccessible. Here, we deployed a recent cell-type mapping pipeline, Matrix Inversion and Subset Selection (MISS), to determine the brain-wide distributions of pan-hippocampal and neocortical cells in the mouse, and then used these maps to identify general principles of cell-type-based selective vulnerability in PS19 mouse models. We found that hippocampal glutamatergic neurons as a whole were significantly positively associated with regional tau deposition, suggesting vulnerability, while cortical glutamatergic and GABAergic neurons were negatively associated. We also identified oligodendrocytes as the single-most strongly negatively associated cell type. Further, cell-type distributions were more predictive of end-time-point tau pathology than AD-risk-gene expression. Using gene ontology analysis, we found that the genes that are directly correlated to tau pathology are functionally distinct from those that constitutively embody the vulnerable cells. In short, we have elucidated cell-type correlates of tau deposition across mouse models of tauopathy, advancing our understanding of selective cellular vulnerability at a whole-brain level.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Communications Biology
Communications Biology Medicine-Medicine (miscellaneous)
CiteScore
8.60
自引率
1.70%
发文量
1233
审稿时长
13 weeks
期刊介绍: Communications Biology is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the biological sciences. Research papers published by the journal represent significant advances bringing new biological insight to a specialized area of research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信