Modulation of Extrinsic and Intrinsic Signaling Together with Neuronal Activation Enhances Forelimb Motor Recovery after Cervical Spinal Cord Injury.

IF 2.7 3区 医学 Q3 NEUROSCIENCES
eNeuro Pub Date : 2025-03-05 Print Date: 2025-03-01 DOI:10.1523/ENEURO.0359-24.2025
Hirohide Takatani, Naoki Fujita, Fumiyasu Imai, Yutaka Yoshida
{"title":"Modulation of Extrinsic and Intrinsic Signaling Together with Neuronal Activation Enhances Forelimb Motor Recovery after Cervical Spinal Cord Injury.","authors":"Hirohide Takatani, Naoki Fujita, Fumiyasu Imai, Yutaka Yoshida","doi":"10.1523/ENEURO.0359-24.2025","DOIUrl":null,"url":null,"abstract":"<p><p>Singular strategies for promoting axon regeneration and motor recovery after spinal cord injury (SCI) have been attempted with limited success. For instance, the deletion of <i>RhoA</i> and phosphatase and tensin homolog (<i>Pten</i>) (an extrinsic and intrinsic modulating factor, respectively) in corticospinal neurons (CSNs) promotes axon sprouting after thoracic SCI; however, it is unable to restore motor function. Here, we examine the effects of combining <i>RhoA/Pten</i> deletion in CSNs with chemogenetic neuronal stimulation on axonal growth and motor recovery after SCI in mice. We find that this combinatorial approach promotes greater axonal growth and presynaptic bouton formation in CSNs within the spinal cord compared with <i>RhoA</i>;<i>Pten</i> deletion alone. Furthermore, chemogenetic neuronal stimulation of <i>RhoA</i>;<i>Pten</i>-deleted CSNs improves forelimb performance in behavioral tasks after SCI compared with <i>RhoA</i>;<i>Pten</i> deletion alone. These results demonstrate that combination therapies pairing genetic modifications with neuronal stimulation can promote greater presynaptic formation and motor recovery following SCI than either strategy alone.</p>","PeriodicalId":11617,"journal":{"name":"eNeuro","volume":" ","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2025-03-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11881905/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"eNeuro","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1523/ENEURO.0359-24.2025","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"Print","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Singular strategies for promoting axon regeneration and motor recovery after spinal cord injury (SCI) have been attempted with limited success. For instance, the deletion of RhoA and phosphatase and tensin homolog (Pten) (an extrinsic and intrinsic modulating factor, respectively) in corticospinal neurons (CSNs) promotes axon sprouting after thoracic SCI; however, it is unable to restore motor function. Here, we examine the effects of combining RhoA/Pten deletion in CSNs with chemogenetic neuronal stimulation on axonal growth and motor recovery after SCI in mice. We find that this combinatorial approach promotes greater axonal growth and presynaptic bouton formation in CSNs within the spinal cord compared with RhoA;Pten deletion alone. Furthermore, chemogenetic neuronal stimulation of RhoA;Pten-deleted CSNs improves forelimb performance in behavioral tasks after SCI compared with RhoA;Pten deletion alone. These results demonstrate that combination therapies pairing genetic modifications with neuronal stimulation can promote greater presynaptic formation and motor recovery following SCI than either strategy alone.

求助全文
约1分钟内获得全文 求助全文
来源期刊
eNeuro
eNeuro Neuroscience-General Neuroscience
CiteScore
5.00
自引率
2.90%
发文量
486
审稿时长
16 weeks
期刊介绍: An open-access journal from the Society for Neuroscience, eNeuro publishes high-quality, broad-based, peer-reviewed research focused solely on the field of neuroscience. eNeuro embodies an emerging scientific vision that offers a new experience for authors and readers, all in support of the Society’s mission to advance understanding of the brain and nervous system.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信