Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics.

IF 7 1区 医学 Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Investigative Radiology Pub Date : 2025-08-01 Epub Date: 2025-02-07 DOI:10.1097/RLI.0000000000001158
Caroline Wilpert, Maximilian Frederic Russe, Jakob Weiss, Christian Voss, Stephan Rau, Ralph Strecker, Marco Reisert, Ricardo Bedin, Horst Urbach, Maxim Zaitsev, Fabian Bamberg, Alexander Rau
{"title":"Deep Learning Reconstruction Combined With Conventional Acceleration Improves Image Quality of 3 T Brain MRI and Does Not Impact Quantitative Diffusion Metrics.","authors":"Caroline Wilpert, Maximilian Frederic Russe, Jakob Weiss, Christian Voss, Stephan Rau, Ralph Strecker, Marco Reisert, Ricardo Bedin, Horst Urbach, Maxim Zaitsev, Fabian Bamberg, Alexander Rau","doi":"10.1097/RLI.0000000000001158","DOIUrl":null,"url":null,"abstract":"<p><strong>Objectives: </strong>Deep learning reconstruction of magnetic resonance imaging (MRI) allows to either improve image quality of accelerated sequences or to generate high-resolution data. We evaluated the interaction of conventional acceleration and Deep Resolve Boost (DRB)-based reconstruction techniques of a single-shot echo-planar imaging (ssEPI) diffusion-weighted imaging (DWI) on image quality features in cerebral 3 T brain MRI and compared it with a state-of-the-art DWI sequence.</p><p><strong>Materials and methods: </strong>In this prospective study, 24 patients received a standard of care ssEPI DWI and 5 additional adapted ssEPI DWI sequences, 3 of those with DRB reconstruction. Qualitative analysis encompassed rating of image quality, noise, sharpness, and artifacts. Quantitative analysis compared apparent diffusion coefficient (ADC) values region-wise between the different DWI sequences. Intraclass correlations, paired sampled t test, Wilcoxon signed rank test, and weighted Cohen κ were used.</p><p><strong>Results: </strong>Compared with the reference standard, the acquisition time was significantly improved in accelerated DWI from 75 seconds up to 50% (39 seconds; P < 0.001). All tested DRB-reconstructed sequences showed significantly improved image quality, sharpness, and reduced noise ( P < 0.001). Highest image quality was observed for the combination of conventional acceleration and DL reconstruction. In singular slices, more artifacts were observed for DRB-reconstructed sequences ( P < 0.001). While in general high consistency was found between ADC values, increasing differences in ADC values were noted with increasing acceleration and application of DRB. Falsely pathological ADCs were rarely observed near frontal poles and optic chiasm attributable to susceptibility-related artifacts due to adjacent sinuses.</p><p><strong>Conclusions: </strong>In this comparative study, we found that the combination of conventional acceleration and DRB reconstruction improves image quality and enables faster acquisition of ssEPI DWI. Nevertheless, a tradeoff between increased acceleration with risk of stronger artifacts and high-resolution with longer acquisition time needs to be considered, especially for application in cerebral MRI.</p>","PeriodicalId":14486,"journal":{"name":"Investigative Radiology","volume":" ","pages":"526-534"},"PeriodicalIF":7.0000,"publicationDate":"2025-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Investigative Radiology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1097/RLI.0000000000001158","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Objectives: Deep learning reconstruction of magnetic resonance imaging (MRI) allows to either improve image quality of accelerated sequences or to generate high-resolution data. We evaluated the interaction of conventional acceleration and Deep Resolve Boost (DRB)-based reconstruction techniques of a single-shot echo-planar imaging (ssEPI) diffusion-weighted imaging (DWI) on image quality features in cerebral 3 T brain MRI and compared it with a state-of-the-art DWI sequence.

Materials and methods: In this prospective study, 24 patients received a standard of care ssEPI DWI and 5 additional adapted ssEPI DWI sequences, 3 of those with DRB reconstruction. Qualitative analysis encompassed rating of image quality, noise, sharpness, and artifacts. Quantitative analysis compared apparent diffusion coefficient (ADC) values region-wise between the different DWI sequences. Intraclass correlations, paired sampled t test, Wilcoxon signed rank test, and weighted Cohen κ were used.

Results: Compared with the reference standard, the acquisition time was significantly improved in accelerated DWI from 75 seconds up to 50% (39 seconds; P < 0.001). All tested DRB-reconstructed sequences showed significantly improved image quality, sharpness, and reduced noise ( P < 0.001). Highest image quality was observed for the combination of conventional acceleration and DL reconstruction. In singular slices, more artifacts were observed for DRB-reconstructed sequences ( P < 0.001). While in general high consistency was found between ADC values, increasing differences in ADC values were noted with increasing acceleration and application of DRB. Falsely pathological ADCs were rarely observed near frontal poles and optic chiasm attributable to susceptibility-related artifacts due to adjacent sinuses.

Conclusions: In this comparative study, we found that the combination of conventional acceleration and DRB reconstruction improves image quality and enables faster acquisition of ssEPI DWI. Nevertheless, a tradeoff between increased acceleration with risk of stronger artifacts and high-resolution with longer acquisition time needs to be considered, especially for application in cerebral MRI.

深度学习重建结合传统加速提高了3t脑MRI的图像质量,并且不影响定量扩散指标。
目的:磁共振成像(MRI)的深度学习重建可以提高加速序列的图像质量或生成高分辨率数据。我们评估了常规加速和基于Deep Resolve Boost (DRB)的单次回波平面成像(ssEPI)弥散加权成像(DWI)重建技术对大脑3t脑MRI图像质量特征的相互作用,并将其与最先进的DWI序列进行了比较。材料和方法:在这项前瞻性研究中,24例患者接受了标准护理ssEPI DWI和5个额外的适应ssEPI DWI序列,其中3例进行了DRB重建。定性分析包括图像质量、噪声、清晰度和伪影的评级。定量分析比较了不同DWI序列间表观扩散系数(ADC)的区域差异。采用类内相关性、配对抽样t检验、Wilcoxon符号秩检验和加权Cohen κ检验。结果:与参考标准相比,加速DWI采集时间从75秒提高到50%(39秒;P < 0.001)。所有测试的drb重建序列显示图像质量、清晰度和噪声降低显著提高(P < 0.001)。结合常规加速和DL重建的图像质量最高。在单片中,drb重建序列观察到更多的伪影(P < 0.001)。虽然ADC值之间的一致性很高,但随着DRB的加速和应用的增加,ADC值的差异也越来越大。由于相邻鼻窦的敏感性相关伪影,在额极和视交叉附近很少观察到假病理adc。结论:在本对比研究中,我们发现常规加速与DRB重建相结合可以提高图像质量,更快地获取ssEPI DWI。然而,需要考虑加速增加带来更强伪影风险与高分辨率和更长的采集时间之间的权衡,特别是在脑MRI应用中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Investigative Radiology
Investigative Radiology 医学-核医学
CiteScore
15.10
自引率
16.40%
发文量
188
审稿时长
4-8 weeks
期刊介绍: Investigative Radiology publishes original, peer-reviewed reports on clinical and laboratory investigations in diagnostic imaging, the diagnostic use of radioactive isotopes, computed tomography, positron emission tomography, magnetic resonance imaging, ultrasound, digital subtraction angiography, and related modalities. Emphasis is on early and timely publication. Primarily research-oriented, the journal also includes a wide variety of features of interest to clinical radiologists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信