Modeling pegcetacoplan treatment effect for atrophic age-related macular degeneration with AI-based progression prediction.

IF 1.9 Q2 OPHTHALMOLOGY
Irmela Mantel, Romina M Lasagni Vitar, Sandro De Zanet
{"title":"Modeling pegcetacoplan treatment effect for atrophic age-related macular degeneration with AI-based progression prediction.","authors":"Irmela Mantel, Romina M Lasagni Vitar, Sandro De Zanet","doi":"10.1186/s40942-025-00634-z","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>To illustrate the treatment effect of Pegcetacoplan for atrophy secondary to age-related macular degeneration (AMD), on an individualized topographic progression prediction basis, using a deep learning model.</p><p><strong>Methods: </strong>Patients (N = 99) with atrophy secondary to AMD with longitudinal optical coherence tomography (OCT) data were retrospectively analyzed. We used a previously published deep-learning-based atrophy progression prediction algorithm to predict the 2-year atrophy progression, including the topographic likelihood of future retinal pigment epithelial and outer retinal atrophy (RORA), according to the baseline OCT input. The algorithm output was a step-less individualized topographic modeling of the RORA growth, allowing for illustrating the progression line corresponding to an 80% growth compared to the natural course of 100% growth.</p><p><strong>Results: </strong>The treatment effect of Pegcetacoplan was illustrated as the line when 80% of the growth is reached in this continuous model. Besides the well-known variability of atrophy growth rate, our results showed unequal growth according to the fundus location. It became evident that this difference is of potential functional interest for patient outcomes.</p><p><strong>Conclusions: </strong>This model based on an 80% growth of RORA after two years illustrates the variable effect of treatment with Pegcetacoplan according to the individual situation, supporting personalized medical care.</p>","PeriodicalId":14289,"journal":{"name":"International Journal of Retina and Vitreous","volume":"11 1","pages":"14"},"PeriodicalIF":1.9000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806661/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Retina and Vitreous","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s40942-025-00634-z","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"OPHTHALMOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: To illustrate the treatment effect of Pegcetacoplan for atrophy secondary to age-related macular degeneration (AMD), on an individualized topographic progression prediction basis, using a deep learning model.

Methods: Patients (N = 99) with atrophy secondary to AMD with longitudinal optical coherence tomography (OCT) data were retrospectively analyzed. We used a previously published deep-learning-based atrophy progression prediction algorithm to predict the 2-year atrophy progression, including the topographic likelihood of future retinal pigment epithelial and outer retinal atrophy (RORA), according to the baseline OCT input. The algorithm output was a step-less individualized topographic modeling of the RORA growth, allowing for illustrating the progression line corresponding to an 80% growth compared to the natural course of 100% growth.

Results: The treatment effect of Pegcetacoplan was illustrated as the line when 80% of the growth is reached in this continuous model. Besides the well-known variability of atrophy growth rate, our results showed unequal growth according to the fundus location. It became evident that this difference is of potential functional interest for patient outcomes.

Conclusions: This model based on an 80% growth of RORA after two years illustrates the variable effect of treatment with Pegcetacoplan according to the individual situation, supporting personalized medical care.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
3.50
自引率
4.30%
发文量
81
审稿时长
19 weeks
期刊介绍: International Journal of Retina and Vitreous focuses on the ophthalmic subspecialty of vitreoretinal disorders. The journal presents original articles on new approaches to diagnosis, outcomes of clinical trials, innovations in pharmacological therapy and surgical techniques, as well as basic science advances that impact clinical practice. Topical areas include, but are not limited to: -Imaging of the retina, choroid and vitreous -Innovations in optical coherence tomography (OCT) -Small-gauge vitrectomy, retinal detachment, chromovitrectomy -Electroretinography (ERG), microperimetry, other functional tests -Intraocular tumors -Retinal pharmacotherapy & drug delivery -Diabetic retinopathy & other vascular diseases -Age-related macular degeneration (AMD) & other macular entities
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信