{"title":"Characterization of G2/M checkpoint classifier for personalized treatment in uterine corpus endometrial carcinoma.","authors":"Yiming Liu, Yusi Wang, Shu Tan, Xiaochen Shi, Jinglin Wen, Dejia Chen, Yue Zhao, Wenjing Pan, Zhaoyang Jia, Chunru Lu, Ge Lou","doi":"10.1186/s12935-025-03667-4","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Uterine Corpus Endometrial Carcinoma (UCEC) is a highly heterogeneous tumor, and limitations in current diagnostic methods, along with treatment resistance in some patients, pose significant challenges for managing UCEC. The excessive activation of G2/M checkpoint genes is a crucial factor affecting malignancy prognosis and promoting treatment resistance.</p><p><strong>Methods: </strong>Gene expression profiles and clinical feature data mainly came from the TCGA-UCEC cohort. Unsupervised clustering was performed to construct G2/M checkpoint (G2MC) subtypes. The differences in biological and clinical features of different subtypes were compared through survival analysis, clinical characteristics, immune infiltration, tumor mutation burden, and drug sensitivity analysis. Ultimately, an artificial neural network (ANN) and machine learning were employed to develop the G2MC subtypes classifier.</p><p><strong>Results: </strong>We constructed a classifier based on the overall activity of the G2/M checkpoint signaling pathway to identify patients with different risks and treatment responses, and attempted to explore potential therapeutic targets. The results showed that two G2MC subtypes have completely different G2/M checkpoint-related gene expression profiles. Compared with the subtype C2, the subtype C1 exhibited higher G2MC scores and was associated with faster disease progression, higher clinical staging, poorer pathological types, and lower therapy responsiveness of cisplatin, radiotherapy and immunotherapy. Experiments targeting the feature gene KIF23 revealed its crucial role in reducing HEC-1A sensitivity to cisplatin and radiotherapy.</p><p><strong>Conclusion: </strong>In summary, our study developed a classifier for identifying G2MC subtypes, and this finding holds promise for advancing precision treatment strategies for UCEC.</p>","PeriodicalId":9385,"journal":{"name":"Cancer Cell International","volume":"25 1","pages":"34"},"PeriodicalIF":5.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Cell International","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s12935-025-03667-4","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Uterine Corpus Endometrial Carcinoma (UCEC) is a highly heterogeneous tumor, and limitations in current diagnostic methods, along with treatment resistance in some patients, pose significant challenges for managing UCEC. The excessive activation of G2/M checkpoint genes is a crucial factor affecting malignancy prognosis and promoting treatment resistance.
Methods: Gene expression profiles and clinical feature data mainly came from the TCGA-UCEC cohort. Unsupervised clustering was performed to construct G2/M checkpoint (G2MC) subtypes. The differences in biological and clinical features of different subtypes were compared through survival analysis, clinical characteristics, immune infiltration, tumor mutation burden, and drug sensitivity analysis. Ultimately, an artificial neural network (ANN) and machine learning were employed to develop the G2MC subtypes classifier.
Results: We constructed a classifier based on the overall activity of the G2/M checkpoint signaling pathway to identify patients with different risks and treatment responses, and attempted to explore potential therapeutic targets. The results showed that two G2MC subtypes have completely different G2/M checkpoint-related gene expression profiles. Compared with the subtype C2, the subtype C1 exhibited higher G2MC scores and was associated with faster disease progression, higher clinical staging, poorer pathological types, and lower therapy responsiveness of cisplatin, radiotherapy and immunotherapy. Experiments targeting the feature gene KIF23 revealed its crucial role in reducing HEC-1A sensitivity to cisplatin and radiotherapy.
Conclusion: In summary, our study developed a classifier for identifying G2MC subtypes, and this finding holds promise for advancing precision treatment strategies for UCEC.
期刊介绍:
Cancer Cell International publishes articles on all aspects of cancer cell biology, originating largely from, but not limited to, work using cell culture techniques.
The journal focuses on novel cancer studies reporting data from biological experiments performed on cells grown in vitro, in two- or three-dimensional systems, and/or in vivo (animal experiments). These types of experiments have provided crucial data in many fields, from cell proliferation and transformation, to epithelial-mesenchymal interaction, to apoptosis, and host immune response to tumors.
Cancer Cell International also considers articles that focus on novel technologies or novel pathways in molecular analysis and on epidemiological studies that may affect patient care, as well as articles reporting translational cancer research studies where in vitro discoveries are bridged to the clinic. As such, the journal is interested in laboratory and animal studies reporting on novel biomarkers of tumor progression and response to therapy and on their applicability to human cancers.