Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste.

IF 4.5 3区 生物学 Q1 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Jimmy K Kabeya, Nadège K Ngombe, Paulin K Mutwale, Justin B Safari, Gauta Gold Matlou, Rui W M Krause, Christian I Nkanga
{"title":"Antimicrobial capping agents on silver nanoparticles made via green method using natural products from banana plant waste.","authors":"Jimmy K Kabeya, Nadège K Ngombe, Paulin K Mutwale, Justin B Safari, Gauta Gold Matlou, Rui W M Krause, Christian I Nkanga","doi":"10.1080/21691401.2025.2462335","DOIUrl":null,"url":null,"abstract":"<p><p>Herein, we investigated the phytochemical composition and antibacterial activities of the organic layers from biosynthesized silver nanoparticles (AgNPs). AgNPs were synthesized using <i>Musa paradisiaca</i> and <i>Musa sapientum</i> extracts. UV-vis absorption in the 400-450 nm range indicated surface plasmonic resonance peak of AgNPs. Samples analyses using dynamic light scattering and transmission electron microscopy revealed the presence of particles within nanometric ranges, with sizes of 30-140 nm and 8-40 nm, respectively. Fourier transform infrared (FTIR) unveiled the presence of several organic functional groups on the surface of AgNPs, indicating the presence of phytochemicals from plant extracts. Thin layer chromatography (TLC) of the phytochemicals (capping agents) from AgNPs identified multiple groups of secondary metabolites. These phytochemical capping agents exhibited antibacterial activities against <i>Staphylococcus aureus</i>, <i>Escherichia coli</i>, and <i>Pseudomonas aeruginosa</i>, with minimum inhibitory concentrations ranging from 62.5 to 1000 µg/mL. Regardless of the bacterial species or plant parts (leaves or pseudo-stems), capping agents from <i>M. sapientum</i> nanoparticles displayed significantly enhanced antibacterial effectiveness compared to all other samples, including the raw plant extracts and biosynthesized capped and uncapped AgNPs. These results suggest the presence of antimicrobial phytochemicals on biosynthesized AgNPs, highlighting the promise of green nanoparticle synthesis as a valuable approach in bioprospecting antimicrobial agents.</p>","PeriodicalId":8736,"journal":{"name":"Artificial Cells, Nanomedicine, and Biotechnology","volume":"53 1","pages":"29-42"},"PeriodicalIF":4.5000,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Artificial Cells, Nanomedicine, and Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1080/21691401.2025.2462335","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Herein, we investigated the phytochemical composition and antibacterial activities of the organic layers from biosynthesized silver nanoparticles (AgNPs). AgNPs were synthesized using Musa paradisiaca and Musa sapientum extracts. UV-vis absorption in the 400-450 nm range indicated surface plasmonic resonance peak of AgNPs. Samples analyses using dynamic light scattering and transmission electron microscopy revealed the presence of particles within nanometric ranges, with sizes of 30-140 nm and 8-40 nm, respectively. Fourier transform infrared (FTIR) unveiled the presence of several organic functional groups on the surface of AgNPs, indicating the presence of phytochemicals from plant extracts. Thin layer chromatography (TLC) of the phytochemicals (capping agents) from AgNPs identified multiple groups of secondary metabolites. These phytochemical capping agents exhibited antibacterial activities against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa, with minimum inhibitory concentrations ranging from 62.5 to 1000 µg/mL. Regardless of the bacterial species or plant parts (leaves or pseudo-stems), capping agents from M. sapientum nanoparticles displayed significantly enhanced antibacterial effectiveness compared to all other samples, including the raw plant extracts and biosynthesized capped and uncapped AgNPs. These results suggest the presence of antimicrobial phytochemicals on biosynthesized AgNPs, highlighting the promise of green nanoparticle synthesis as a valuable approach in bioprospecting antimicrobial agents.

利用香蕉植物废料中的天然产物,通过绿色方法制备纳米银抗菌封盖剂。
在此,我们研究了生物合成银纳米粒子(AgNPs)有机层的植物化学组成和抗菌活性。以天堂芭蕉和智慧芭蕉提取物为原料合成AgNPs。紫外可见吸收在400 ~ 450 nm范围内显示出AgNPs的表面等离子共振峰。利用动态光散射和透射电子显微镜对样品进行分析,发现颗粒的大小分别为30-140 nm和8-40 nm。傅里叶变换红外(FTIR)揭示了AgNPs表面存在几个有机官能团,表明存在来自植物提取物的植物化学物质。AgNPs的植物化学物质(封盖剂)的薄层色谱(TLC)鉴定出多组次生代谢物。这些植物化学封盖剂对金黄色葡萄球菌、大肠杆菌和铜绿假单胞菌具有抑菌活性,最低抑菌浓度为62.5 ~ 1000µg/mL。无论细菌种类或植物部分(叶片或假茎),与所有其他样品(包括原始植物提取物和生物合成的带帽和未带帽的AgNPs)相比,来自M. sapientum纳米颗粒的封盖剂显示出显著增强的抗菌效果。这些结果表明生物合成的AgNPs上存在抗菌植物化学物质,突出了绿色纳米颗粒合成作为生物勘探抗菌药物的一种有价值的方法的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Artificial Cells, Nanomedicine, and Biotechnology
Artificial Cells, Nanomedicine, and Biotechnology BIOTECHNOLOGY & APPLIED MICROBIOLOGY-ENGINEERING, BIOMEDICAL
CiteScore
10.90
自引率
0.00%
发文量
48
审稿时长
20 weeks
期刊介绍: Artificial Cells, Nanomedicine and Biotechnology covers the frontiers of interdisciplinary research and application, combining artificial cells, nanotechnology, nanobiotechnology, biotechnology, molecular biology, bioencapsulation, novel carriers, stem cells and tissue engineering. Emphasis is on basic research, applied research, and clinical and industrial applications of the following topics:artificial cellsblood substitutes and oxygen therapeuticsnanotechnology, nanobiotecnology, nanomedicinetissue engineeringstem cellsbioencapsulationmicroencapsulation and nanoencapsulationmicroparticles and nanoparticlesliposomescell therapy and gene therapyenzyme therapydrug delivery systemsbiodegradable and biocompatible polymers for scaffolds and carriersbiosensorsimmobilized enzymes and their usesother biotechnological and nanobiotechnological approachesRapid progress in modern research cannot be carried out in isolation and is based on the combined use of the different novel approaches. The interdisciplinary research involving novel approaches, as discussed above, has revolutionized this field resulting in rapid developments. This journal serves to bring these different, modern and futuristic approaches together for the academic, clinical and industrial communities to allow for even greater developments of this highly interdisciplinary area.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信