Lab-created conductive filament based on nickel and graphite particles: An attractive material for the additive manufacture of enhanced electrochemical sensors for non-enzymatic and selective glucose sensing.
Natalia M Caldas, Lucas V de Faria, Amanda G Batista, Anderson O Alves, Cassiano C de Souza, Pedro H S Borges, Edson Nossol, Renato C Matos, Diego P Rocha, Felipe S Semaan, Rafael M Dornellas
{"title":"Lab-created conductive filament based on nickel and graphite particles: An attractive material for the additive manufacture of enhanced electrochemical sensors for non-enzymatic and selective glucose sensing.","authors":"Natalia M Caldas, Lucas V de Faria, Amanda G Batista, Anderson O Alves, Cassiano C de Souza, Pedro H S Borges, Edson Nossol, Renato C Matos, Diego P Rocha, Felipe S Semaan, Rafael M Dornellas","doi":"10.1016/j.talanta.2025.127686","DOIUrl":null,"url":null,"abstract":"<p><p>Developing tailor-made conductive filaments has emerged as a promising niche for producing affordable and high-performance 3D-printed electrochemical sensors. In this context, we propose a novel conductive filament based on graphite, nickel, and polylactic acid (G/Ni/PLA) for the fabrication of non-enzymatic electrochemical sensors aimed at glucose (GLU) determination, a key biomarker in diabetes diagnosis. The materials were thoroughly characterized using morphological, structural, elemental, and electrochemical techniques, which confirmed the effective incorporation of G and Ni into the thermoplastic matrix. Special emphasis was placed on the electrochemical conversion of Ni<sup>2</sup>⁺ in an alkaline medium (0.1 mol L⁻<sup>1</sup> NaOH) into redox-active species (Ni(OH)₂ and NiOOH), which mediate the electrocatalytic oxidation of GLU. Additionally, the influence of varying nickel contents (7.5 %, 10 %, and 12.5 % wt.) on the electrochemical response towards GLU was systematically investigated, with the best performance observed at the highest nickel loading. The innovative 3D-printed G/Ni/PLA sensor was integrated with a batch injection analysis (BIA) system for rapid and sensitive amperometric detection of GLU in artificial biological fluids. The sensor demonstrated a wide linear range (50-1500 μmol L⁻<sup>1</sup>), a low detection limit (2.6 μmol L⁻<sup>1</sup>), excellent repeatability (RSD < 9.0 %), and high selectivity, even in the presence of potential interferents such as urea, uric acid, and ascorbic acid. Furthermore, the method was successfully applied to analyze synthetic saliva (a non-invasive sample matrix) and blood plasma under normal and abnormal GLU levels, achieving satisfactory recovery rates ranging from 93 % to 100 %. Therefore, the proposed analytical approach is simple, selective, precise, and accurate, making it highly suitable for non-enzymatic GLU sensing in clinical samples, contributing to the effective diagnosis of diabetes.</p>","PeriodicalId":435,"journal":{"name":"Talanta","volume":"287 ","pages":"127686"},"PeriodicalIF":5.6000,"publicationDate":"2025-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Talanta","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.talanta.2025.127686","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing tailor-made conductive filaments has emerged as a promising niche for producing affordable and high-performance 3D-printed electrochemical sensors. In this context, we propose a novel conductive filament based on graphite, nickel, and polylactic acid (G/Ni/PLA) for the fabrication of non-enzymatic electrochemical sensors aimed at glucose (GLU) determination, a key biomarker in diabetes diagnosis. The materials were thoroughly characterized using morphological, structural, elemental, and electrochemical techniques, which confirmed the effective incorporation of G and Ni into the thermoplastic matrix. Special emphasis was placed on the electrochemical conversion of Ni2⁺ in an alkaline medium (0.1 mol L⁻1 NaOH) into redox-active species (Ni(OH)₂ and NiOOH), which mediate the electrocatalytic oxidation of GLU. Additionally, the influence of varying nickel contents (7.5 %, 10 %, and 12.5 % wt.) on the electrochemical response towards GLU was systematically investigated, with the best performance observed at the highest nickel loading. The innovative 3D-printed G/Ni/PLA sensor was integrated with a batch injection analysis (BIA) system for rapid and sensitive amperometric detection of GLU in artificial biological fluids. The sensor demonstrated a wide linear range (50-1500 μmol L⁻1), a low detection limit (2.6 μmol L⁻1), excellent repeatability (RSD < 9.0 %), and high selectivity, even in the presence of potential interferents such as urea, uric acid, and ascorbic acid. Furthermore, the method was successfully applied to analyze synthetic saliva (a non-invasive sample matrix) and blood plasma under normal and abnormal GLU levels, achieving satisfactory recovery rates ranging from 93 % to 100 %. Therefore, the proposed analytical approach is simple, selective, precise, and accurate, making it highly suitable for non-enzymatic GLU sensing in clinical samples, contributing to the effective diagnosis of diabetes.
期刊介绍:
Talanta provides a forum for the publication of original research papers, short communications, and critical reviews in all branches of pure and applied analytical chemistry. Papers are evaluated based on established guidelines, including the fundamental nature of the study, scientific novelty, substantial improvement or advantage over existing technology or methods, and demonstrated analytical applicability. Original research papers on fundamental studies, and on novel sensor and instrumentation developments, are encouraged. Novel or improved applications in areas such as clinical and biological chemistry, environmental analysis, geochemistry, materials science and engineering, and analytical platforms for omics development are welcome.
Analytical performance of methods should be determined, including interference and matrix effects, and methods should be validated by comparison with a standard method, or analysis of a certified reference material. Simple spiking recoveries may not be sufficient. The developed method should especially comprise information on selectivity, sensitivity, detection limits, accuracy, and reliability. However, applying official validation or robustness studies to a routine method or technique does not necessarily constitute novelty. Proper statistical treatment of the data should be provided. Relevant literature should be cited, including related publications by the authors, and authors should discuss how their proposed methodology compares with previously reported methods.