Pre-Marine Isotope Stage 2 glacial activity around the Nevado de Chañi massif in the Central Andes of Argentina and paleoclimate implications

IF 1.9 3区 地球科学 Q3 GEOGRAPHY, PHYSICAL
Mateo A. Martini, Michael R. Kaplan, Lucia Guerra, Estaban Sagredo, Joerg M. Schaefer, Marc W. Caffee
{"title":"Pre-Marine Isotope Stage 2 glacial activity around the Nevado de Chañi massif in the Central Andes of Argentina and paleoclimate implications","authors":"Mateo A. Martini,&nbsp;Michael R. Kaplan,&nbsp;Lucia Guerra,&nbsp;Estaban Sagredo,&nbsp;Joerg M. Schaefer,&nbsp;Marc W. Caffee","doi":"10.1002/jqs.3687","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>We describe and analyze the glacial geomorphology and new <sup>10</sup>Be cosmogenic surface exposure ages from moraines deposited before Marine Isotope Stage (MIS) 2 around Nevado de Chañi (24°4′ S, 65°45′ W), a north–south-trending massif located in the arid subtropical mountains of northwestern Argentina. We combine these data with previously published ages in order to establish a glacier chronology around the massif and the central Andes. The results show at least three phases of glacier expansions occurred before the global Last Glacial Maximum, (i) during MIS 6, (ii) close to the transition from MIS 4 to MIS 3, and (iii) during mid-late MIS 3. Based on a comparison of the timing of glacier advances with other glacial and paleoclimatic proxies elsewhere, we infer that glaciers grew in this arid region of the subtropical Andes during periods of reduced temperatures and wetter conditions, ultimately due to intensification of the South American Summer Monsoon. In contrast, during MIS 5 no glacial activity was recorded around the massif, and we infer that even if wetter conditions prevailed in the region the temperature was not sufficiently low to support glaciations.</p>\n </div>","PeriodicalId":16929,"journal":{"name":"Journal of Quaternary Science","volume":"40 2","pages":"201-212"},"PeriodicalIF":1.9000,"publicationDate":"2024-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Quaternary Science","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/jqs.3687","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOGRAPHY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

We describe and analyze the glacial geomorphology and new 10Be cosmogenic surface exposure ages from moraines deposited before Marine Isotope Stage (MIS) 2 around Nevado de Chañi (24°4′ S, 65°45′ W), a north–south-trending massif located in the arid subtropical mountains of northwestern Argentina. We combine these data with previously published ages in order to establish a glacier chronology around the massif and the central Andes. The results show at least three phases of glacier expansions occurred before the global Last Glacial Maximum, (i) during MIS 6, (ii) close to the transition from MIS 4 to MIS 3, and (iii) during mid-late MIS 3. Based on a comparison of the timing of glacier advances with other glacial and paleoclimatic proxies elsewhere, we infer that glaciers grew in this arid region of the subtropical Andes during periods of reduced temperatures and wetter conditions, ultimately due to intensification of the South American Summer Monsoon. In contrast, during MIS 5 no glacial activity was recorded around the massif, and we infer that even if wetter conditions prevailed in the region the temperature was not sufficiently low to support glaciations.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Quaternary Science
Journal of Quaternary Science 地学-地球科学综合
CiteScore
4.70
自引率
8.70%
发文量
82
审稿时长
6-12 weeks
期刊介绍: The Journal of Quaternary Science publishes original papers on any field of Quaternary research, and aims to promote a wider appreciation and deeper understanding of the earth''s history during the last 2.58 million years. Papers from a wide range of disciplines appear in JQS including, for example, Archaeology, Botany, Climatology, Geochemistry, Geochronology, Geology, Geomorphology, Geophysics, Glaciology, Limnology, Oceanography, Palaeoceanography, Palaeoclimatology, Palaeoecology, Palaeontology, Soil Science and Zoology. The journal particularly welcomes papers reporting the results of interdisciplinary or multidisciplinary research which are of wide international interest to Quaternary scientists. Short communications and correspondence relating to views and information contained in JQS may also be considered for publication.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信