Evaluation of 18F-FDG absorbed dose ratios in percent in adult and pediatric reference phantoms using DoseCalcs Monte Carlo platform

IF 1.6 3区 工程技术 Q3 CHEMISTRY, INORGANIC & NUCLEAR
Tarik El Ghalbzouri , Tarek El Bardouni , Jaafar El Bakkali , Hicham Satti , Abdelhamid Nouayti , Iman Berriban , Randa Yerrou , Assia Arectout , Maryam Hadouachi
{"title":"Evaluation of 18F-FDG absorbed dose ratios in percent in adult and pediatric reference phantoms using DoseCalcs Monte Carlo platform","authors":"Tarik El Ghalbzouri ,&nbsp;Tarek El Bardouni ,&nbsp;Jaafar El Bakkali ,&nbsp;Hicham Satti ,&nbsp;Abdelhamid Nouayti ,&nbsp;Iman Berriban ,&nbsp;Randa Yerrou ,&nbsp;Assia Arectout ,&nbsp;Maryam Hadouachi","doi":"10.1016/j.apradiso.2025.111705","DOIUrl":null,"url":null,"abstract":"<div><div>This study investigates the field of radiation exposure in nuclear medicine, which might have implications for exposure to ionizing radiation in pediatric cases. To demonstrate the difference in radiosensitivity between younger patients and adults and to highlight the need for individualized radiation protection procedures when investigating medical imaging and therapy, this study examines the absorbed dose ratios in percent (ADR%) for <sup>18</sup>F-FDG. This parameter is an important indicator, illustrating the percentage of radiation dose absorbed by specific organs/tissues concerning the emitted radiation from different body regions.</div><div>The methodology involves calculating ADR% in twelve voxel-based models for adults, children, and newborns, as referenced by International Commission on Radiological Protection (ICRP) Publications 110 and 143. The simulations used the <sup>18</sup>F positron spectrum from ICRP Publication 107 and Livermore models. These simulations were performed using the DoseCalcs Monte Carlo platform.</div><div>We have calculated the S-values and ADR% using the DoseCalcs simulations of the <sup>18</sup>F positrons and provided a comprehensive dataset of ADR% results. This dataset evaluates the impact of anatomical variation on absorbed dose in target regions. It consists of 141 target regions and 8 different source regions.</div><div>Significant differences in radiosensitivity were observed in ADR% values among various source–target combinations for each age and sex group. The self-irradiation ADR% reaches up to 95%, while the cross-irradiation ADR% varies, ranging approximately from 0.1% to 12%, depending on the mass of the target organ, the distance between it and the source organ, and the chemical composition of these organs. Also, the variations observed across different age and sex phantoms highlight the importance of personalized internal dosimetry, especially for pediatric cases with heightened radiosensitivity. Healthcare practitioners can use the dataset of ADR% values as the first stage to illustrate variability and optimize nuclear medicine imaging with <sup>18</sup>F-FDG while reducing radiation risks.</div></div>","PeriodicalId":8096,"journal":{"name":"Applied Radiation and Isotopes","volume":"218 ","pages":"Article 111705"},"PeriodicalIF":1.6000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Radiation and Isotopes","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0969804325000508","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the field of radiation exposure in nuclear medicine, which might have implications for exposure to ionizing radiation in pediatric cases. To demonstrate the difference in radiosensitivity between younger patients and adults and to highlight the need for individualized radiation protection procedures when investigating medical imaging and therapy, this study examines the absorbed dose ratios in percent (ADR%) for 18F-FDG. This parameter is an important indicator, illustrating the percentage of radiation dose absorbed by specific organs/tissues concerning the emitted radiation from different body regions.
The methodology involves calculating ADR% in twelve voxel-based models for adults, children, and newborns, as referenced by International Commission on Radiological Protection (ICRP) Publications 110 and 143. The simulations used the 18F positron spectrum from ICRP Publication 107 and Livermore models. These simulations were performed using the DoseCalcs Monte Carlo platform.
We have calculated the S-values and ADR% using the DoseCalcs simulations of the 18F positrons and provided a comprehensive dataset of ADR% results. This dataset evaluates the impact of anatomical variation on absorbed dose in target regions. It consists of 141 target regions and 8 different source regions.
Significant differences in radiosensitivity were observed in ADR% values among various source–target combinations for each age and sex group. The self-irradiation ADR% reaches up to 95%, while the cross-irradiation ADR% varies, ranging approximately from 0.1% to 12%, depending on the mass of the target organ, the distance between it and the source organ, and the chemical composition of these organs. Also, the variations observed across different age and sex phantoms highlight the importance of personalized internal dosimetry, especially for pediatric cases with heightened radiosensitivity. Healthcare practitioners can use the dataset of ADR% values as the first stage to illustrate variability and optimize nuclear medicine imaging with 18F-FDG while reducing radiation risks.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Radiation and Isotopes
Applied Radiation and Isotopes 工程技术-核科学技术
CiteScore
3.00
自引率
12.50%
发文量
406
审稿时长
13.5 months
期刊介绍: Applied Radiation and Isotopes provides a high quality medium for the publication of substantial, original and scientific and technological papers on the development and peaceful application of nuclear, radiation and radionuclide techniques in chemistry, physics, biochemistry, biology, medicine, security, engineering and in the earth, planetary and environmental sciences, all including dosimetry. Nuclear techniques are defined in the broadest sense and both experimental and theoretical papers are welcome. They include the development and use of α- and β-particles, X-rays and γ-rays, neutrons and other nuclear particles and radiations from all sources, including radionuclides, synchrotron sources, cyclotrons and reactors and from the natural environment. The journal aims to publish papers with significance to an international audience, containing substantial novelty and scientific impact. The Editors reserve the rights to reject, with or without external review, papers that do not meet these criteria. Papers dealing with radiation processing, i.e., where radiation is used to bring about a biological, chemical or physical change in a material, should be directed to our sister journal Radiation Physics and Chemistry.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信