Balancing water, power, and carbon: A synergistic optimization framework for mega cascade reservoir operations

IF 9 1区 工程技术 Q1 ENERGY & FUELS
Zhihao Ning , Yanlai Zhou , Juntao He , Chun Tang , Chong-Yu Xu , Fi-John Chang
{"title":"Balancing water, power, and carbon: A synergistic optimization framework for mega cascade reservoir operations","authors":"Zhihao Ning ,&nbsp;Yanlai Zhou ,&nbsp;Juntao He ,&nbsp;Chun Tang ,&nbsp;Chong-Yu Xu ,&nbsp;Fi-John Chang","doi":"10.1016/j.renene.2025.122567","DOIUrl":null,"url":null,"abstract":"<div><div>This study addresses the critical intersection of renewable energy production and carbon emission reduction in the context of intensified human activities and global climate change by proposing an innovative optimization framework for mega cascade reservoirs. Unlike traditional approaches that often prioritize hydropower output or carbon emissions, our framework uniquely integrates a multi-objective optimization model that simultaneously minimizes carbon emissions, mitigates flood risk, and maximizes hydropower output within the physical constraints of cascade reservoir operations. To assess the performance of various impoundment schemes, we apply the Technique for Order Preference by Similarity to Ideal Solution, demonstrating the model's versatility across different inflow scenarios using seven cascade reservoirs in the Yangtze River as case studies. Our findings reveal that, compared to practical operation scheme, the optimal scheme enhances hydropower output by 5.82 billion kW·h/a (5.32 %), increases water supply by 2.68 billion m³ (8.00 %), reduces carbon emissions by 17.31 GgC/a (14.66 %), and lowers carbon intensity by 0.63 kgCO<sub>2e</sub>/MW·h (15.22 %). This research advances theoretical frameworks for reservoir operations and offers practical implications for policymakers, enabling more informed decision-making to achieve sustainable development goals. The novel integration of water-carbon synergies within reservoir management contributes significantly to the discourse on sustainable energy systems and climate resilience.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"243 ","pages":"Article 122567"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125002290","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

This study addresses the critical intersection of renewable energy production and carbon emission reduction in the context of intensified human activities and global climate change by proposing an innovative optimization framework for mega cascade reservoirs. Unlike traditional approaches that often prioritize hydropower output or carbon emissions, our framework uniquely integrates a multi-objective optimization model that simultaneously minimizes carbon emissions, mitigates flood risk, and maximizes hydropower output within the physical constraints of cascade reservoir operations. To assess the performance of various impoundment schemes, we apply the Technique for Order Preference by Similarity to Ideal Solution, demonstrating the model's versatility across different inflow scenarios using seven cascade reservoirs in the Yangtze River as case studies. Our findings reveal that, compared to practical operation scheme, the optimal scheme enhances hydropower output by 5.82 billion kW·h/a (5.32 %), increases water supply by 2.68 billion m³ (8.00 %), reduces carbon emissions by 17.31 GgC/a (14.66 %), and lowers carbon intensity by 0.63 kgCO2e/MW·h (15.22 %). This research advances theoretical frameworks for reservoir operations and offers practical implications for policymakers, enabling more informed decision-making to achieve sustainable development goals. The novel integration of water-carbon synergies within reservoir management contributes significantly to the discourse on sustainable energy systems and climate resilience.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信