Evaluating uncertainty of shared energy in solar energy communities using a stochastic simulation framework

IF 9 1区 工程技术 Q1 ENERGY & FUELS
F. De Bettin , F.D. Minuto , D.S. Schiera , A. Lanzini
{"title":"Evaluating uncertainty of shared energy in solar energy communities using a stochastic simulation framework","authors":"F. De Bettin ,&nbsp;F.D. Minuto ,&nbsp;D.S. Schiera ,&nbsp;A. Lanzini","doi":"10.1016/j.renene.2025.122604","DOIUrl":null,"url":null,"abstract":"<div><div>Properly sizing renewable energy sources is crucial for ensuring their techno-economic viability, especially under policies promoting solar power through photovoltaics (PV). The inherent variability of PV production requires assessing energy yield and self-consumption at different time scales, along with their associated uncertainties, to evaluate technical performance and financial risks. This challenge is critical for solar renewable energy communities (RECs), where energy sharing determines performance quality.</div><div>This work introduces a framework that quantifies the impact of PV's stochastic nature on energy sharing uncertainty in RECs. Tested across seven locations in Italy leveraging PVGIS data, the framework integrates path-integral and Fokker-Planck formalisms with a Monte Carlo approach, and is demonstrated to effectively capture production variability and energy yields.</div><div>For each location, 10,000 synthetic profiles were generated for a 50 kW peak power plant connected to the grid, serving 100 residential consumers with a typical consumption profile representative of the area. The relative uncertainty in yearly shared energy proved to range from 2 % to 3 %.</div><div>Comparisons with benchmark methods, like averaged hourly production (AHP) and typical meteorological year (TMY) profiles, revealed an systematic overestimation of shared energy during months of production surplus, underscoring the need of accounting for stochasticity in energy modeling.</div></div>","PeriodicalId":419,"journal":{"name":"Renewable Energy","volume":"243 ","pages":"Article 122604"},"PeriodicalIF":9.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Renewable Energy","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0960148125002666","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

Properly sizing renewable energy sources is crucial for ensuring their techno-economic viability, especially under policies promoting solar power through photovoltaics (PV). The inherent variability of PV production requires assessing energy yield and self-consumption at different time scales, along with their associated uncertainties, to evaluate technical performance and financial risks. This challenge is critical for solar renewable energy communities (RECs), where energy sharing determines performance quality.
This work introduces a framework that quantifies the impact of PV's stochastic nature on energy sharing uncertainty in RECs. Tested across seven locations in Italy leveraging PVGIS data, the framework integrates path-integral and Fokker-Planck formalisms with a Monte Carlo approach, and is demonstrated to effectively capture production variability and energy yields.
For each location, 10,000 synthetic profiles were generated for a 50 kW peak power plant connected to the grid, serving 100 residential consumers with a typical consumption profile representative of the area. The relative uncertainty in yearly shared energy proved to range from 2 % to 3 %.
Comparisons with benchmark methods, like averaged hourly production (AHP) and typical meteorological year (TMY) profiles, revealed an systematic overestimation of shared energy during months of production surplus, underscoring the need of accounting for stochasticity in energy modeling.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Renewable Energy
Renewable Energy 工程技术-能源与燃料
CiteScore
18.40
自引率
9.20%
发文量
1955
审稿时长
6.6 months
期刊介绍: Renewable Energy journal is dedicated to advancing knowledge and disseminating insights on various topics and technologies within renewable energy systems and components. Our mission is to support researchers, engineers, economists, manufacturers, NGOs, associations, and societies in staying updated on new developments in their respective fields and applying alternative energy solutions to current practices. As an international, multidisciplinary journal in renewable energy engineering and research, we strive to be a premier peer-reviewed platform and a trusted source of original research and reviews in the field of renewable energy. Join us in our endeavor to drive innovation and progress in sustainable energy solutions.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信