{"title":"Simulation study on damage behavior of a shallow-buried Foundation bridge under combined action of flood scouring and heavy vehicle load","authors":"Tong Wu, Gangping Fan, Chuandong Dou, Xing Li, Chunyang Dou, Jian Che, Tianzhuo Wang, Jincheng Rao","doi":"10.1016/j.oceaneng.2025.120410","DOIUrl":null,"url":null,"abstract":"<div><div>Due to the insufficient burial depth of shallow-buried foundation bridges, foundation voiding easily occurs during floods or rapid water flows. When heavy vehicles pass over these partially voided bridges, the stress state of the foundation deteriorates instantaneously, causing critical components to exceed their load-bearing capacity in a short period, leading to a chain reaction that results in the rapid collapse and overall failure of the bridge structure. Previous numerical simulations of bridge water damage often neglected the strong coupling between water flow, soil, and structure during the scouring process. This paper applies a fluid-solid coupling simulation modeling method for bridge damage behavior under scouring action to study the structural damage behavior of shallow-buried foundation bridges under the combined effects of flood scouring and heavy vehicle load. This method employs point cloud reverse engineering technology to solve the difficult problem of converting the complex scour morphology around the foundation under flood scouring into a structural model, and investigates the multi-hazard damage behavior of shallow-buried foundations by coupling extreme hydraulic effects on the pier surface and placing the most unfavorable heavy vehicle loads on the bridge deck.</div></div>","PeriodicalId":19403,"journal":{"name":"Ocean Engineering","volume":"323 ","pages":"Article 120410"},"PeriodicalIF":4.6000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ocean Engineering","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0029801825001258","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, CIVIL","Score":null,"Total":0}
引用次数: 0
Abstract
Due to the insufficient burial depth of shallow-buried foundation bridges, foundation voiding easily occurs during floods or rapid water flows. When heavy vehicles pass over these partially voided bridges, the stress state of the foundation deteriorates instantaneously, causing critical components to exceed their load-bearing capacity in a short period, leading to a chain reaction that results in the rapid collapse and overall failure of the bridge structure. Previous numerical simulations of bridge water damage often neglected the strong coupling between water flow, soil, and structure during the scouring process. This paper applies a fluid-solid coupling simulation modeling method for bridge damage behavior under scouring action to study the structural damage behavior of shallow-buried foundation bridges under the combined effects of flood scouring and heavy vehicle load. This method employs point cloud reverse engineering technology to solve the difficult problem of converting the complex scour morphology around the foundation under flood scouring into a structural model, and investigates the multi-hazard damage behavior of shallow-buried foundations by coupling extreme hydraulic effects on the pier surface and placing the most unfavorable heavy vehicle loads on the bridge deck.
期刊介绍:
Ocean Engineering provides a medium for the publication of original research and development work in the field of ocean engineering. Ocean Engineering seeks papers in the following topics.