{"title":"Eco-innovative approaches for recycling non-polyester/cotton blended textiles","authors":"Chandra Manivannan Arun , Logeshwaran Panneerselvan , Gunasekhar Nachimuthu , Meredith Conaty , Thava Palanisami","doi":"10.1016/j.wmb.2025.02.001","DOIUrl":null,"url":null,"abstract":"<div><div>Blended textile waste constitutes a substantial portion of the global textile waste stream, making recycling essential for minimizing the industry’s environmental impact. Although polyester/cotton recycling is well developed, many other blended textiles are routinely landfilled owing to a lack of effective recycling technologies. This review critically assesses existing strategies for recycling non-polyester/cotton blends, highlighting the key challenges and opportunities for innovation. In the sorting stage, integrating artificial intelligence (AI) and machine learning (ML) enhances efficiency and accuracy. Advanced methods, such as green chemistry, mechanical recycling, and enzymatic treatments, have proven effective for most blended textiles; however, fibers, such as polypropylene, still lack defined closed-loop recycling routes. Life cycle assessment (LCA) indicates that recycling textile waste can reduce environmental impacts by 60%, but the absence of comprehensive LCA studies on diverse recycling approaches limits reliability. Furthermore, while textile recycling is sustainable, concerns regarding the emission of hazardous additives and organic pollutants pose ecological and health risks. Therefore, advanced recycling technologies for non-polyester/cotton blends are crucial for achieving sustainability. Future research should focus on developing efficient recycling methods for complex blends, addressing the environmental impact of hazardous substances, and standardizing LCA methodologies to ensure economic and environmental viability.</div></div>","PeriodicalId":101276,"journal":{"name":"Waste Management Bulletin","volume":"3 1","pages":"Pages 255-270"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Waste Management Bulletin","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949750725000136","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Blended textile waste constitutes a substantial portion of the global textile waste stream, making recycling essential for minimizing the industry’s environmental impact. Although polyester/cotton recycling is well developed, many other blended textiles are routinely landfilled owing to a lack of effective recycling technologies. This review critically assesses existing strategies for recycling non-polyester/cotton blends, highlighting the key challenges and opportunities for innovation. In the sorting stage, integrating artificial intelligence (AI) and machine learning (ML) enhances efficiency and accuracy. Advanced methods, such as green chemistry, mechanical recycling, and enzymatic treatments, have proven effective for most blended textiles; however, fibers, such as polypropylene, still lack defined closed-loop recycling routes. Life cycle assessment (LCA) indicates that recycling textile waste can reduce environmental impacts by 60%, but the absence of comprehensive LCA studies on diverse recycling approaches limits reliability. Furthermore, while textile recycling is sustainable, concerns regarding the emission of hazardous additives and organic pollutants pose ecological and health risks. Therefore, advanced recycling technologies for non-polyester/cotton blends are crucial for achieving sustainability. Future research should focus on developing efficient recycling methods for complex blends, addressing the environmental impact of hazardous substances, and standardizing LCA methodologies to ensure economic and environmental viability.