Mohsin Ali, Doowon Lee, Ibtisam Ahmad, Myoungsu Chae, Kyeong Heon Kim, Hee–Dong Kim
{"title":"Enhanced response and recovery observed in CNTs gas sensor using ZnO/HfO2 bilayer memristor heater","authors":"Mohsin Ali, Doowon Lee, Ibtisam Ahmad, Myoungsu Chae, Kyeong Heon Kim, Hee–Dong Kim","doi":"10.1016/j.snb.2025.137403","DOIUrl":null,"url":null,"abstract":"In carbon nanotubes (CNTs) based gas sensors, external energy sources are used to enhance the response and recovery characteristics, However, they have significant energy consumption and are constrained by size limitations. In this work, to solve them, we propose a ZnO/HfO<sub>2</sub> bilayer–memristor heater (MH) embedded CNTs gas sensor. Firstly, when tuning the thickness of ZnO in the MH, we observed a thickness dependency in the response characteristic, which can be explained by the variation in the gap of the ruptured conduction filament (CF). As a result, the 70 nm–ZnO MH, which had the longest gap between the ruptured CF and the CNTs layer, demonstrated the highest response of 58.3%. This response is 54.1% higher than that of the conventional CNTs gas sensor. In addition, in a pulse recovery study, we observed that the MH–embedded CNTs gas sensor returned to its initial state within only 1 ms after gas detection, which is 35ⅹ10<sup>5</sup> times faster than a conventional CNTs sensor. These results indicate that the heating caused by the MH can effectively raise the temperature of the insulator near its surface, meaning that MH can be a good candidate as a heater in the microscale gas sensors.","PeriodicalId":425,"journal":{"name":"Sensors and Actuators B: Chemical","volume":"79 4 1","pages":""},"PeriodicalIF":8.0000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sensors and Actuators B: Chemical","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1016/j.snb.2025.137403","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
In carbon nanotubes (CNTs) based gas sensors, external energy sources are used to enhance the response and recovery characteristics, However, they have significant energy consumption and are constrained by size limitations. In this work, to solve them, we propose a ZnO/HfO2 bilayer–memristor heater (MH) embedded CNTs gas sensor. Firstly, when tuning the thickness of ZnO in the MH, we observed a thickness dependency in the response characteristic, which can be explained by the variation in the gap of the ruptured conduction filament (CF). As a result, the 70 nm–ZnO MH, which had the longest gap between the ruptured CF and the CNTs layer, demonstrated the highest response of 58.3%. This response is 54.1% higher than that of the conventional CNTs gas sensor. In addition, in a pulse recovery study, we observed that the MH–embedded CNTs gas sensor returned to its initial state within only 1 ms after gas detection, which is 35ⅹ105 times faster than a conventional CNTs sensor. These results indicate that the heating caused by the MH can effectively raise the temperature of the insulator near its surface, meaning that MH can be a good candidate as a heater in the microscale gas sensors.
期刊介绍:
Sensors & Actuators, B: Chemical is an international journal focused on the research and development of chemical transducers. It covers chemical sensors and biosensors, chemical actuators, and analytical microsystems. The journal is interdisciplinary, aiming to publish original works showcasing substantial advancements beyond the current state of the art in these fields, with practical applicability to solving meaningful analytical problems. Review articles are accepted by invitation from an Editor of the journal.