Trimming defective perovskite layer surface boosts the efficiency for inorganic solar cells

IF 6.3 2区 材料科学 Q2 CHEMISTRY, PHYSICAL
Sanlong Wang, Jingping Gao, Kailin Chi, Yuechen Zhai, Ji Qi, Yucheng Li, Bao Liu
{"title":"Trimming defective perovskite layer surface boosts the efficiency for inorganic solar cells","authors":"Sanlong Wang, Jingping Gao, Kailin Chi, Yuechen Zhai, Ji Qi, Yucheng Li, Bao Liu","doi":"10.1016/j.apsusc.2025.162654","DOIUrl":null,"url":null,"abstract":"Inorganic perovskites have attracted much attention due to their excellent photothermal stability. However, the elevated density of surface defect states limits further improvements of the efficiency. Here, we demonstrate a surface defect trimming (SDT) strategy to enhance device photovoltaic performance. In brief, surface defects are eliminated by the synergistic action of methanol solvent and 1, 3-diaminoguanidine monohydrochloride (DGMC). The amino group of DGMC interacts with Halogen ion via hydrogen bonding and with Pb<sup>2+</sup> via Lewis base–acid coordination bonds. also plays the role of in-situ passivation of defects. The surface reconstruction was realized in the process of secondary annealing. The surface defect state density is trimmed and the work function is well matched with the transport layer. Consequently, the inverted device based on SDT strategy achieves 20.20 % power conversion efficiency (<em>PCE</em>) and record 85 % fill factor (<em>FF</em>) in the full ambient air.","PeriodicalId":247,"journal":{"name":"Applied Surface Science","volume":"12 1","pages":""},"PeriodicalIF":6.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1016/j.apsusc.2025.162654","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Inorganic perovskites have attracted much attention due to their excellent photothermal stability. However, the elevated density of surface defect states limits further improvements of the efficiency. Here, we demonstrate a surface defect trimming (SDT) strategy to enhance device photovoltaic performance. In brief, surface defects are eliminated by the synergistic action of methanol solvent and 1, 3-diaminoguanidine monohydrochloride (DGMC). The amino group of DGMC interacts with Halogen ion via hydrogen bonding and with Pb2+ via Lewis base–acid coordination bonds. also plays the role of in-situ passivation of defects. The surface reconstruction was realized in the process of secondary annealing. The surface defect state density is trimmed and the work function is well matched with the transport layer. Consequently, the inverted device based on SDT strategy achieves 20.20 % power conversion efficiency (PCE) and record 85 % fill factor (FF) in the full ambient air.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Applied Surface Science
Applied Surface Science 工程技术-材料科学:膜
CiteScore
12.50
自引率
7.50%
发文量
3393
审稿时长
67 days
期刊介绍: Applied Surface Science covers topics contributing to a better understanding of surfaces, interfaces, nanostructures and their applications. The journal is concerned with scientific research on the atomic and molecular level of material properties determined with specific surface analytical techniques and/or computational methods, as well as the processing of such structures.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信