{"title":"Anopheles gambiae phagocytic hemocytes promote Plasmodium falciparum infection by regulating midgut epithelial integrity","authors":"Victor Cardoso-Jaime, George Dimopoulos","doi":"10.1038/s41467-025-56313-y","DOIUrl":null,"url":null,"abstract":"<p>For successful transmission, the malaria parasite must traverse tissue epithelia and survive attack from the insect’s innate immune system. Hemocytes play a multitude of roles in mosquitoes, including defense against invading pathogens. Here, we show that hemocytes of the major malaria vector <i>Anopheles gambiae</i> promote <i>Plasmodium falciparum</i> infection by maintaining midgut epithelial integrity by controlling cell proliferation upon blood feeding. The mosquito’s hemocytes also control the midgut microbiota and immune gene expression. Our study unveils novel hemocyte functions that are exploited by the human malaria parasite to evade the mosquito’s immune system.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"11 1","pages":""},"PeriodicalIF":14.7000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-56313-y","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
For successful transmission, the malaria parasite must traverse tissue epithelia and survive attack from the insect’s innate immune system. Hemocytes play a multitude of roles in mosquitoes, including defense against invading pathogens. Here, we show that hemocytes of the major malaria vector Anopheles gambiae promote Plasmodium falciparum infection by maintaining midgut epithelial integrity by controlling cell proliferation upon blood feeding. The mosquito’s hemocytes also control the midgut microbiota and immune gene expression. Our study unveils novel hemocyte functions that are exploited by the human malaria parasite to evade the mosquito’s immune system.
期刊介绍:
Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.