{"title":"Fundamentals and Perspectives of Positively Charged Single-Metal Site Catalysts for CO2 Electroreduction","authors":"Weiwei Shao, Wenya Fan, Hangmin Guan, Xiaolong Zu, Xingchen Jiao","doi":"10.1021/acsami.4c21988","DOIUrl":null,"url":null,"abstract":"Single-atom catalysts (SACs) show superior efficiency in electrocatalytic carbon dioxide reduction, a key stage in achieving carbon neutrality. Atomically dispersed single-metal sites of SACs are invariably in a positive valence state; namely, they are positively charged single-metal sites (PCSSs). The PCSS catalysts generally possess a distinctive and asymmetric electronic structure, which enables the activation of linear carbon dioxide molecules and stabilizes miscellaneous intermediates during electrocatalysis. Herein, this review summarizes the manner in which the coordination environment, neighboring atoms or groups, and the interaction with the substrate modulate the distinctive electronic properties of PCSSs. Additionally, we overview the recently reported theoretical and experimental advances in terms of structure–performance relationship. Furthermore, we emphasize the previously underappreciated durability of positively charged single-metal sites in CO<sub>2</sub> reduction. Finally, we discuss several pending issues and potential breakthroughs of PCSSs for CO<sub>2</sub> reduction.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"14 1","pages":""},"PeriodicalIF":8.3000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c21988","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Single-atom catalysts (SACs) show superior efficiency in electrocatalytic carbon dioxide reduction, a key stage in achieving carbon neutrality. Atomically dispersed single-metal sites of SACs are invariably in a positive valence state; namely, they are positively charged single-metal sites (PCSSs). The PCSS catalysts generally possess a distinctive and asymmetric electronic structure, which enables the activation of linear carbon dioxide molecules and stabilizes miscellaneous intermediates during electrocatalysis. Herein, this review summarizes the manner in which the coordination environment, neighboring atoms or groups, and the interaction with the substrate modulate the distinctive electronic properties of PCSSs. Additionally, we overview the recently reported theoretical and experimental advances in terms of structure–performance relationship. Furthermore, we emphasize the previously underappreciated durability of positively charged single-metal sites in CO2 reduction. Finally, we discuss several pending issues and potential breakthroughs of PCSSs for CO2 reduction.
期刊介绍:
ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.