Data-efficient prediction of OLED optical properties enabled by transfer learning

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Jeong Min Shin, Sanmun Kim, Sergey G. Menabde, Sehong Park, In-Goo Lee, Injue Kim, Min Seok Jang
{"title":"Data-efficient prediction of OLED optical properties enabled by transfer learning","authors":"Jeong Min Shin, Sanmun Kim, Sergey G. Menabde, Sehong Park, In-Goo Lee, Injue Kim, Min Seok Jang","doi":"10.1515/nanoph-2024-0505","DOIUrl":null,"url":null,"abstract":"It has long been desired to enable global structural optimization of organic light-emitting diodes (OLEDs) for maximal light extraction. The most critical obstacles to achieving this goal are time-consuming optical simulations and discrepancies between simulation and experiment. In this work, by leveraging transfer learning, we demonstrate that fast and reliable prediction of OLED optical properties is possible with several times higher data efficiency compared to previously demonstrated surrogate solvers based on artificial neural networks. Once a neural network is trained for a base OLED structure, it can be transferred to predict the properties of modified structures with additional layers with a relatively small number of additional training samples. Moreover, we demonstrate that, with only a few tenths of experimental data sets, a neural network can be trained to accurately predict experimental measurements of OLEDs, which often differ from simulation results due to fabrication and measurement errors. This is enabled by transferring a pre-trained network, built with a large amount of simulated data, to a new network capable of correcting systematic errors in experiment. Our work proposes a practical approach to designing and optimizing OLED structures with a large number of design parameters to achieve high optical efficiency.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"21 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0505","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

It has long been desired to enable global structural optimization of organic light-emitting diodes (OLEDs) for maximal light extraction. The most critical obstacles to achieving this goal are time-consuming optical simulations and discrepancies between simulation and experiment. In this work, by leveraging transfer learning, we demonstrate that fast and reliable prediction of OLED optical properties is possible with several times higher data efficiency compared to previously demonstrated surrogate solvers based on artificial neural networks. Once a neural network is trained for a base OLED structure, it can be transferred to predict the properties of modified structures with additional layers with a relatively small number of additional training samples. Moreover, we demonstrate that, with only a few tenths of experimental data sets, a neural network can be trained to accurately predict experimental measurements of OLEDs, which often differ from simulation results due to fabrication and measurement errors. This is enabled by transferring a pre-trained network, built with a large amount of simulated data, to a new network capable of correcting systematic errors in experiment. Our work proposes a practical approach to designing and optimizing OLED structures with a large number of design parameters to achieve high optical efficiency.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信