Electrodynamics of photo-carriers in multiferroic Eu0.75Y0.25MnO3

IF 6.5 2区 物理与天体物理 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Yue Huang, Rolando V. Aguilar, Stuart A. Trugman, Sang-Wook Cheong, Yuan Long, Min-Cheol Lee, Jian-Xin Zhu, Priscila F.S. Rosa, Rohit P. Prasankumar, Dmitry A. Yarotski, Abul Azad, Nicholas S. Sirica, Antoinette J. Taylor
{"title":"Electrodynamics of photo-carriers in multiferroic Eu0.75Y0.25MnO3","authors":"Yue Huang, Rolando V. Aguilar, Stuart A. Trugman, Sang-Wook Cheong, Yuan Long, Min-Cheol Lee, Jian-Xin Zhu, Priscila F.S. Rosa, Rohit P. Prasankumar, Dmitry A. Yarotski, Abul Azad, Nicholas S. Sirica, Antoinette J. Taylor","doi":"10.1515/nanoph-2024-0641","DOIUrl":null,"url":null,"abstract":"Understanding and controlling the antiferromagnetic order in multiferroic materials on an ultrafast time scale is a long standing area of interest, due to their potential applications in spintronics and ultrafast magnetoelectric switching. We present an optical pump-terahertz (THz) probe study on multiferroic Eu<jats:sub>0.75</jats:sub>Y<jats:sub>0.25</jats:sub>MnO<jats:sub>3</jats:sub>. The optical pump predominantly excites the d-d transitions of the Mn<jats:sup>3+</jats:sup> ions, and the temporal evolution of the pump-induced transient conductivity is measured with a subsequent THz pulse. Two distinct, temperature-dependent decay times are revealed. The shorter relaxation time corresponds to spin-lattice thermalization, while the longer one is ascribed to electron-hole recombination. A spin-selection rule in the relaxation process is proposed in the magnetic phase. Slight suppression of the electromagnons was observed after the optical pump pulse within the spin-lattice thermalization time scale. These observed fundamental magnetic processes can shed light on ultrafast control of magnetism and photoinduced phase transitions in multiferroics.","PeriodicalId":19027,"journal":{"name":"Nanophotonics","volume":"55 1","pages":""},"PeriodicalIF":6.5000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanophotonics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/nanoph-2024-0641","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Understanding and controlling the antiferromagnetic order in multiferroic materials on an ultrafast time scale is a long standing area of interest, due to their potential applications in spintronics and ultrafast magnetoelectric switching. We present an optical pump-terahertz (THz) probe study on multiferroic Eu0.75Y0.25MnO3. The optical pump predominantly excites the d-d transitions of the Mn3+ ions, and the temporal evolution of the pump-induced transient conductivity is measured with a subsequent THz pulse. Two distinct, temperature-dependent decay times are revealed. The shorter relaxation time corresponds to spin-lattice thermalization, while the longer one is ascribed to electron-hole recombination. A spin-selection rule in the relaxation process is proposed in the magnetic phase. Slight suppression of the electromagnons was observed after the optical pump pulse within the spin-lattice thermalization time scale. These observed fundamental magnetic processes can shed light on ultrafast control of magnetism and photoinduced phase transitions in multiferroics.
求助全文
约1分钟内获得全文 求助全文
来源期刊
Nanophotonics
Nanophotonics NANOSCIENCE & NANOTECHNOLOGY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
13.50
自引率
6.70%
发文量
358
审稿时长
7 weeks
期刊介绍: Nanophotonics, published in collaboration with Sciencewise, is a prestigious journal that showcases recent international research results, notable advancements in the field, and innovative applications. It is regarded as one of the leading publications in the realm of nanophotonics and encompasses a range of article types including research articles, selectively invited reviews, letters, and perspectives. The journal specifically delves into the study of photon interaction with nano-structures, such as carbon nano-tubes, nano metal particles, nano crystals, semiconductor nano dots, photonic crystals, tissue, and DNA. It offers comprehensive coverage of the most up-to-date discoveries, making it an essential resource for physicists, engineers, and material scientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信