Shifting the substrate scope of dimeric pyranose oxidase from monosaccharide to glycoside preference through oligomeric state modification.

Anja Kostelac, Enikő Hermann, Clemens Peterbauer, Chris Oostenbrink, Dietmar Haltrich
{"title":"Shifting the substrate scope of dimeric pyranose oxidase from monosaccharide to glycoside preference through oligomeric state modification.","authors":"Anja Kostelac, Enikő Hermann, Clemens Peterbauer, Chris Oostenbrink, Dietmar Haltrich","doi":"10.1111/febs.70004","DOIUrl":null,"url":null,"abstract":"<p><p>Pyranose oxidase (POx) and C-glycoside oxidase (CGOx) are FAD-dependent oxidoreductases belonging to the glucose-methanol-choline oxidoreductase superfamily and share the same sequence space. Despite a shared structural fold, these two members possess homologous domains that enable (arm and head domain) or disable (insertion-1 domain and barrel-shaped bottom) oligomerization. POxs with a higher oligomerization state (dimeric or tetrameric) exclusively catalyze the oxidation of monosaccharides (d-glucose, d-xylose). In contrast, the monomeric state of POxs/CGOxs is observed to prefer glycosides (homoorientin, phlorizin) and has low activity with free monosaccharides. We aimed to engineer dimeric POx from Kitasatospora aureofaciens (KaPOx) to form a functional monomer, and monomeric POx/CGOx from Streptomyces canus (ScPOx) to a dimeric structure. Deletion of the head and arm domains of the KaPOx subunit resulted in enzyme variants with a less hydrophobic surface, thus affecting its oligomerization. These monomeric KaPOx variants KaPOx_xal and KaPOx_xalh resembled monomeric wild-type POxs/CGOxs and preferred glycosides as substrates over monosaccharides with catalytic efficiencies for phlorizin being 24 × 10<sup>6</sup> higher compared to those for d-xylose. The wild-type dimeric KaPOx showed no activity towards glycosides. We hypothesize that KaPOx_xalh is unable to react with monosaccharides because the introduced mutations alter the positions of monosaccharide-binding residues. The inability of KaPOx to react with glycosides is likely caused by steric hindrance and the inaccessibility of the active site to bulky glycosides due to dimerization. The attempt to engineer ScPOx into a dimeric structure failed at the stage of soluble expression, likely due to exposed hydrophobic patches and aggregation.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Pyranose oxidase (POx) and C-glycoside oxidase (CGOx) are FAD-dependent oxidoreductases belonging to the glucose-methanol-choline oxidoreductase superfamily and share the same sequence space. Despite a shared structural fold, these two members possess homologous domains that enable (arm and head domain) or disable (insertion-1 domain and barrel-shaped bottom) oligomerization. POxs with a higher oligomerization state (dimeric or tetrameric) exclusively catalyze the oxidation of monosaccharides (d-glucose, d-xylose). In contrast, the monomeric state of POxs/CGOxs is observed to prefer glycosides (homoorientin, phlorizin) and has low activity with free monosaccharides. We aimed to engineer dimeric POx from Kitasatospora aureofaciens (KaPOx) to form a functional monomer, and monomeric POx/CGOx from Streptomyces canus (ScPOx) to a dimeric structure. Deletion of the head and arm domains of the KaPOx subunit resulted in enzyme variants with a less hydrophobic surface, thus affecting its oligomerization. These monomeric KaPOx variants KaPOx_xal and KaPOx_xalh resembled monomeric wild-type POxs/CGOxs and preferred glycosides as substrates over monosaccharides with catalytic efficiencies for phlorizin being 24 × 106 higher compared to those for d-xylose. The wild-type dimeric KaPOx showed no activity towards glycosides. We hypothesize that KaPOx_xalh is unable to react with monosaccharides because the introduced mutations alter the positions of monosaccharide-binding residues. The inability of KaPOx to react with glycosides is likely caused by steric hindrance and the inaccessibility of the active site to bulky glycosides due to dimerization. The attempt to engineer ScPOx into a dimeric structure failed at the stage of soluble expression, likely due to exposed hydrophobic patches and aggregation.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信