Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study.

Jilan S Ibrahim, Neamat Hanafi, Mahmoud A Sliem, Tarek A El-Tayeb
{"title":"Enhanced Photothermal Tumor Ablation Using Polypyrrole-Gold Nanocomposites Activated by Polarized Polychromatic Low-Energy Light: An In Vivo Study.","authors":"Jilan S Ibrahim, Neamat Hanafi, Mahmoud A Sliem, Tarek A El-Tayeb","doi":"10.1002/jbio.202400488","DOIUrl":null,"url":null,"abstract":"<p><p>Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.</p>","PeriodicalId":94068,"journal":{"name":"Journal of biophotonics","volume":" ","pages":"e202400488"},"PeriodicalIF":0.0000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of biophotonics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/jbio.202400488","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Photothermal therapy (PTT) offers a minimally invasive approach for cancer treatment, using light energy to selectively heat and destroy cancer cells. Success in PTT depends on efficient, stable, and biocompatible photothermal agents. This study investigates polypyrrole@gold nanocomposites (PPy@Au NCs) as photothermal agents combined with polarized polychromatic low-energy light (PPLEL) to target tumors and limit disease progression. In vivo experiments on Ehrlich carcinoma-bearing female Swiss albino mice demonstrated that PPy@Au NCs selectively accumulated in tumor tissue and, when activated by PPLEL, generated sufficient heat for effective tumor ablation. This approach enhanced treatment efficacy and presented a cost-effective solution due to the affordability of both the nanocomposite and light source. Histopathological analysis confirmed significant tumor reduction, suggesting that this synergistic combination offers a promising cancer treatment strategy. Findings support further research and potential clinical applications in photothermal cancer therapy.

求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信