Latent alignment in deep learning models for EEG decoding.

Stylianos Bakas, Siegfried Ludwig, Dimitrios A Adamos, Nikolaos Laskaris, Yannis Panagakis, Stefanos Zafeiriou
{"title":"Latent alignment in deep learning models for EEG decoding.","authors":"Stylianos Bakas, Siegfried Ludwig, Dimitrios A Adamos, Nikolaos Laskaris, Yannis Panagakis, Stefanos Zafeiriou","doi":"10.1088/1741-2552/adb336","DOIUrl":null,"url":null,"abstract":"<p><p><i>Objective</i>. Brain-computer interfaces (BCIs) face a significant challenge due to variability in electroencephalography (EEG) signals across individuals. While recent approaches have focused on standardizing input signal distributions, we propose that aligning distributions in the deep learning model's feature space is more effective for classification.<i>Approach</i>. We introduce the Latent Alignment method, which won the Benchmarks for EEG Transfer Learning competition. This method can be formulated as a deep set architecture applied to trials from a given subject, introducing deep sets to EEG decoding for the first time. We compare Latent Alignment to recent statistical domain adaptation techniques, carefully considering class-discriminative artifacts and the impact of class distributions on classification performance.<i>Main results</i>. Our experiments across motor imagery, sleep stage classification, and P300 event-related potential tasks validate Latent Alignment's effectiveness. We identify a trade-off between improved classification accuracy when alignment is performed at later modeling stages and increased susceptibility to class imbalance in the trial set used for statistical computation.<i>Significance</i>. Latent Alignment offers consistent improvements to subject-independent deep learning models for EEG decoding when relevant practical considerations are addressed. This work advances our understanding of statistical alignment techniques in EEG decoding and provides insights for their effective implementation in real-world BCI applications, potentially facilitating broader use of BCIs in healthcare, assistive technologies, and beyond. The model code is available athttps://github.com/StylianosBakas/LatentAlignment.</p>","PeriodicalId":94096,"journal":{"name":"Journal of neural engineering","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of neural engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1088/1741-2552/adb336","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Objective. Brain-computer interfaces (BCIs) face a significant challenge due to variability in electroencephalography (EEG) signals across individuals. While recent approaches have focused on standardizing input signal distributions, we propose that aligning distributions in the deep learning model's feature space is more effective for classification.Approach. We introduce the Latent Alignment method, which won the Benchmarks for EEG Transfer Learning competition. This method can be formulated as a deep set architecture applied to trials from a given subject, introducing deep sets to EEG decoding for the first time. We compare Latent Alignment to recent statistical domain adaptation techniques, carefully considering class-discriminative artifacts and the impact of class distributions on classification performance.Main results. Our experiments across motor imagery, sleep stage classification, and P300 event-related potential tasks validate Latent Alignment's effectiveness. We identify a trade-off between improved classification accuracy when alignment is performed at later modeling stages and increased susceptibility to class imbalance in the trial set used for statistical computation.Significance. Latent Alignment offers consistent improvements to subject-independent deep learning models for EEG decoding when relevant practical considerations are addressed. This work advances our understanding of statistical alignment techniques in EEG decoding and provides insights for their effective implementation in real-world BCI applications, potentially facilitating broader use of BCIs in healthcare, assistive technologies, and beyond. The model code is available athttps://github.com/StylianosBakas/LatentAlignment.

脑电解码深度学习模型的潜在对齐。
目的:脑机接口(bci)由于个体间脑电图信号的可变性而面临重大挑战。虽然最近的方法专注于标准化输入信号分布,但我们提出在深度学习模型的特征空间中对齐分布对分类更有效。方法:我们引入了潜在对齐方法,该方法赢得了EEG迁移学习基准(BEETL)竞赛。该方法可以被表述为一种应用于给定受试者试验的深度集架构,首次将深度集引入脑电图解码。我们将Latent Alignment与最近的统计领域自适应技术进行了比较,仔细考虑了类别区分伪影和类别分布对分类性能的影响。主要结果:我们在运动意象、睡眠阶段分类和P300事件相关潜在任务中的实验验证了Latent Alignment的有效性。我们确定了在后期建模阶段进行校准时提高分类精度和在用于统计计算的试验集中增加对类别不平衡的敏感性之间的权衡。意义:当相关的实际考虑得到解决时,潜在校准为EEG解码的主题独立深度学习模型提供了一致的改进。这项工作促进了我们对脑电图解码中的统计对齐技术的理解,并为它们在现实世界的脑机接口应用中的有效实现提供了见解,可能促进脑机接口在医疗保健、辅助技术等领域的更广泛使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信