Luminescent bio-sensors via co-assembly of hen egg white lysozyme with Eu3+/Tb3+-complexes†

IF 6.1 3区 医学 Q1 MATERIALS SCIENCE, BIOMATERIALS
Min Zhang, Miao Qiu, Zengkun Li, Rui Xu, Yao Wang, Wei Wang, Christopher D. Snow, Matt J. Kipper, Laurence A. Belfiore and Jianguo Tang
{"title":"Luminescent bio-sensors via co-assembly of hen egg white lysozyme with Eu3+/Tb3+-complexes†","authors":"Min Zhang, Miao Qiu, Zengkun Li, Rui Xu, Yao Wang, Wei Wang, Christopher D. Snow, Matt J. Kipper, Laurence A. Belfiore and Jianguo Tang","doi":"10.1039/D4TB01766H","DOIUrl":null,"url":null,"abstract":"<p >Protein crystals have advantageous properties as framework materials, such as porosity and organized, high-density functional groups with the potential for guest specificity. Thus, protein crystal materials open up vast opportunities for fluorescent species doping and drug sensing. In this work, we explore this frontier by combining two lanthanide complexes with hen egg white lysozyme (HEWL) and directly obtaining co deposited structures in one step using an anti-solvent method different from the previous two-step method. Cross-linking of the protein was achieved using glutaraldehyde, ensuring the stability of the assembly in diverse solvent environments. The use of glutaraldehyde achieved protein cross-linking, ensuring the stability of the components in various solvent environments, including no leakage of fluorescent substances in ultrapure water and anhydrous ethanol. Differential fluorescence quenching effects of amino acids on the two doped luminescent complexes were observed. Introduction of amino acids, varying in concentration and type, resulted in distinct fluorescence enhancement or quenching effects on the protein assembly loaded with the complexes, and the detection results are reflected through different fitting equations and parameters. By exploring the application of this hybrid material for amino acid detection, this work lays the groundwork for broader applications.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 9","pages":" 3198-3208"},"PeriodicalIF":6.1000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d4tb01766h","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0

Abstract

Protein crystals have advantageous properties as framework materials, such as porosity and organized, high-density functional groups with the potential for guest specificity. Thus, protein crystal materials open up vast opportunities for fluorescent species doping and drug sensing. In this work, we explore this frontier by combining two lanthanide complexes with hen egg white lysozyme (HEWL) and directly obtaining co deposited structures in one step using an anti-solvent method different from the previous two-step method. Cross-linking of the protein was achieved using glutaraldehyde, ensuring the stability of the assembly in diverse solvent environments. The use of glutaraldehyde achieved protein cross-linking, ensuring the stability of the components in various solvent environments, including no leakage of fluorescent substances in ultrapure water and anhydrous ethanol. Differential fluorescence quenching effects of amino acids on the two doped luminescent complexes were observed. Introduction of amino acids, varying in concentration and type, resulted in distinct fluorescence enhancement or quenching effects on the protein assembly loaded with the complexes, and the detection results are reflected through different fitting equations and parameters. By exploring the application of this hybrid material for amino acid detection, this work lays the groundwork for broader applications.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Materials Chemistry B
Journal of Materials Chemistry B MATERIALS SCIENCE, BIOMATERIALS-
CiteScore
11.50
自引率
4.30%
发文量
866
期刊介绍: Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive: Antifouling coatings Biocompatible materials Bioelectronics Bioimaging Biomimetics Biomineralisation Bionics Biosensors Diagnostics Drug delivery Gene delivery Immunobiology Nanomedicine Regenerative medicine & Tissue engineering Scaffolds Soft robotics Stem cells Therapeutic devices
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信