{"title":"Fluor NMR study of amino acid derived ligand to study TSPO","authors":"Luminita Duma , Severine Schneider , Agathe Martinez , Cathy Hachet , Frederic Bihel , Jean-Jacques Lacapere","doi":"10.1016/j.biochi.2025.01.015","DOIUrl":null,"url":null,"abstract":"<div><div>Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved membrane protein involved in various physiological processes and patho-physiological conditions. The endogeneous TSPO ligand is a polypeptide of 9 kDa, but dipeptides with biological activity have been previously synthesized and characterized. Herein, we synthesized a phenyl alanine derived ligand with a <sup>19</sup>F labelling which opens prospective for <sup>19</sup>F-MRI and potential <sup>18</sup>F-PET applications. We characterized the coexistence of two conformers that are not equally sensitive to the media used for membrane protein studies. Interaction studies with the recombinant mouse TSPO (mTSPO) in different membrane-mimicking environments are presented using <sup>19</sup>F NMR enabling structure/function characterizations. A change in the mTSPO environment from pure detergent to lipid/detergent mixture reveals different exchange rates between bound and free ligand forms. Competition experiments with the high-affinity drug ligand (<em>R</em>)-PK 11195 suggests that phenyl alanine derived ligand binds in the same protein cavity.</div></div>","PeriodicalId":251,"journal":{"name":"Biochimie","volume":"233 ","pages":"Pages 14-26"},"PeriodicalIF":3.3000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biochimie","FirstCategoryId":"99","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0300908425000264","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Translocator protein (TSPO, 18 kDa), previously known as peripheral-type benzodiazepine receptor, is an evolutionarily conserved membrane protein involved in various physiological processes and patho-physiological conditions. The endogeneous TSPO ligand is a polypeptide of 9 kDa, but dipeptides with biological activity have been previously synthesized and characterized. Herein, we synthesized a phenyl alanine derived ligand with a 19F labelling which opens prospective for 19F-MRI and potential 18F-PET applications. We characterized the coexistence of two conformers that are not equally sensitive to the media used for membrane protein studies. Interaction studies with the recombinant mouse TSPO (mTSPO) in different membrane-mimicking environments are presented using 19F NMR enabling structure/function characterizations. A change in the mTSPO environment from pure detergent to lipid/detergent mixture reveals different exchange rates between bound and free ligand forms. Competition experiments with the high-affinity drug ligand (R)-PK 11195 suggests that phenyl alanine derived ligand binds in the same protein cavity.
期刊介绍:
Biochimie publishes original research articles, short communications, review articles, graphical reviews, mini-reviews, and hypotheses in the broad areas of biology, including biochemistry, enzymology, molecular and cell biology, metabolic regulation, genetics, immunology, microbiology, structural biology, genomics, proteomics, and molecular mechanisms of disease. Biochimie publishes exclusively in English.
Articles are subject to peer review, and must satisfy the requirements of originality, high scientific integrity and general interest to a broad range of readers. Submissions that are judged to be of sound scientific and technical quality but do not fully satisfy the requirements for publication in Biochimie may benefit from a transfer service to a more suitable journal within the same subject area.