{"title":"Regulation of the gelatin helix-to-coil transition through chain confinements at the polymer-protein interface and protein-protein interface","authors":"Woojin Choi, Jinkee Hong","doi":"10.1016/j.actbio.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Gelatin is an essential material widely used in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. However, the current helix-to-coil transition is limited by its single-step behavior and the difficulty in designing a specific onset temperature. In this study, we investigated the fundamentals of the helix-to-coil transition with a focus on gelatin chain mobility. We observed distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The confinement approach serves two purposes: first, it prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition; second, the interfacial confinement between the polymer and gelatin, referred to as polymer-protein interface confinement, restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins, that is protein-protein interface confinement, shifts the onset temperature to a higher point. This fundamental comprehension of helix-to-coil transition could contribute to broadening the biomedical application potential of gelatin materials.</div></div><div><h3>Statement of significance</h3><div>Gelatin is essential in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. Herein, we fundamentally investigated the distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The gelatin chain confinement prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition. The interfacial confinement between the polymer and gelatin restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins shifts the onset temperature to a higher point.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 216-224"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000881","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Gelatin is an essential material widely used in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. However, the current helix-to-coil transition is limited by its single-step behavior and the difficulty in designing a specific onset temperature. In this study, we investigated the fundamentals of the helix-to-coil transition with a focus on gelatin chain mobility. We observed distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The confinement approach serves two purposes: first, it prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition; second, the interfacial confinement between the polymer and gelatin, referred to as polymer-protein interface confinement, restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins, that is protein-protein interface confinement, shifts the onset temperature to a higher point. This fundamental comprehension of helix-to-coil transition could contribute to broadening the biomedical application potential of gelatin materials.
Statement of significance
Gelatin is essential in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. Herein, we fundamentally investigated the distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The gelatin chain confinement prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition. The interfacial confinement between the polymer and gelatin restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins shifts the onset temperature to a higher point.
期刊介绍:
Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.