Regulation of the gelatin helix-to-coil transition through chain confinements at the polymer-protein interface and protein-protein interface

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Woojin Choi, Jinkee Hong
{"title":"Regulation of the gelatin helix-to-coil transition through chain confinements at the polymer-protein interface and protein-protein interface","authors":"Woojin Choi,&nbsp;Jinkee Hong","doi":"10.1016/j.actbio.2025.02.003","DOIUrl":null,"url":null,"abstract":"<div><div>Gelatin is an essential material widely used in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. However, the current helix-to-coil transition is limited by its single-step behavior and the difficulty in designing a specific onset temperature. In this study, we investigated the fundamentals of the helix-to-coil transition with a focus on gelatin chain mobility. We observed distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The confinement approach serves two purposes: first, it prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition; second, the interfacial confinement between the polymer and gelatin, referred to as polymer-protein interface confinement, restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins, that is protein-protein interface confinement, shifts the onset temperature to a higher point. This fundamental comprehension of helix-to-coil transition could contribute to broadening the biomedical application potential of gelatin materials.</div></div><div><h3>Statement of significance</h3><div>Gelatin is essential in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. Herein, we fundamentally investigated the distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The gelatin chain confinement prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition. The interfacial confinement between the polymer and gelatin restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins shifts the onset temperature to a higher point.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 216-224"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1742706125000881","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Gelatin is an essential material widely used in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. However, the current helix-to-coil transition is limited by its single-step behavior and the difficulty in designing a specific onset temperature. In this study, we investigated the fundamentals of the helix-to-coil transition with a focus on gelatin chain mobility. We observed distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The confinement approach serves two purposes: first, it prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition; second, the interfacial confinement between the polymer and gelatin, referred to as polymer-protein interface confinement, restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins, that is protein-protein interface confinement, shifts the onset temperature to a higher point. This fundamental comprehension of helix-to-coil transition could contribute to broadening the biomedical application potential of gelatin materials.

Statement of significance

Gelatin is essential in biomedical applications due to its characteristic temperature responsivity—helix-to-coil transition. Herein, we fundamentally investigated the distinctive kinetics of the helix-to-coil transition, which is resilient and can actuate in multiple steps or with a controllable onset point. This was achieved by confining the gelatin chain with a hydrophilic polymer or gelatin itself. The gelatin chain confinement prevents excessive mobility of the generated coils, maintaining physical resilience after the helix-to-coil transition. The interfacial confinement between the polymer and gelatin restricts the helix-to-coil transition, resulting in a multistep transition process. Additionally, strong confinement at the interface between gelatins of different origins shifts the onset temperature to a higher point.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信