Photoswitching protein-XTEN fusions as injectable optoacoustic probes

IF 9.4 1区 医学 Q1 ENGINEERING, BIOMEDICAL
Yishu Huang , Mariia Stankevych , Vipul Gujrati , Uwe Klemm , Azeem Mohammed , David Wiesner , Mara Saccomano , Monica Tost , Annette Feuchtinger , Kanuj Mishra , Oliver Bruns , Arie Geerlof , Vasilis Ntziachristos , Andre C. Stiel
{"title":"Photoswitching protein-XTEN fusions as injectable optoacoustic probes","authors":"Yishu Huang ,&nbsp;Mariia Stankevych ,&nbsp;Vipul Gujrati ,&nbsp;Uwe Klemm ,&nbsp;Azeem Mohammed ,&nbsp;David Wiesner ,&nbsp;Mara Saccomano ,&nbsp;Monica Tost ,&nbsp;Annette Feuchtinger ,&nbsp;Kanuj Mishra ,&nbsp;Oliver Bruns ,&nbsp;Arie Geerlof ,&nbsp;Vasilis Ntziachristos ,&nbsp;Andre C. Stiel","doi":"10.1016/j.actbio.2025.02.002","DOIUrl":null,"url":null,"abstract":"<div><div>Optoacoustic imaging (OAI) is a unique in vivo imaging technique combining deep tissue penetration with high resolution and molecular sensitivity. OAI relying on strong intrinsic contrast, such as blood hemoglobin, already shows its value in medical diagnostics. However, OAI sensitivity to current extrinsic contrast agents is insufficient and limits its role in detecting disease-related biomarkers. The recently introduced concept of photoswitching and temporal unmixing techniques for OAI allows detecting extrinsic contrast with high sensitivity, allowing the visualization of small populations of cells labeled with photoswitching proteins deep within the tissue. However, transgene modification might not be permitted in some cases, such as for diagnostic use. Therefore, it is desirable to leverage the concept of photoswitching OAI towards injectable formulations. Since photoswitchable synthetic dyes are mainly excited by blue wavelengths unsuited for imaging in tissue, we propose exploiting the addition of XTENs to photoswitching proteins towards yielding injectable agents. The addition of XTEN to a protein enhances its plasma half-life and bioavailability, thus allowing its use, for example, in targeted labeling approaches. In this pilot study, we show that intravenously injected near-infrared absorbing photoswitchable proteins, <em>Re</em>BphP-PCM, coupled to XTEN, allow highly sensitive optoacoustic visualization of a tumor xenograft in vivo. The sensitivity to XTENs-<em>Re</em>BphP-PCM determined by <em>ex vivo</em> analysis of labeled cells is one to two orders of magnitude beyond conventional synthetic dyes used currently in OAI. The enhanced sensitivity afforded by photoswitching OAI, in combination with the increased bioavailability and biocompatibility of XTENs-<em>Re</em>BphP-PCM, makes this fusion protein a promising tool for facilitating sensitive detection of biomarkers in OAI with a potential for future use in diagnostics.</div></div><div><h3>Statement of significance</h3><div>Optoacoustic imaging (OAI) is a unique in vivo imaging technique that combines deep tissue penetration with high resolution. OAI, which relies on intrinsic contrast, such as blood hemoglobin, could already be valuable in medical diagnostics. However, the use of extrinsic contrast agents to augment disease-related biomarkers in research and diagnostics suffers from very limited sensitivity of the generated contrast agent. We present an intravenously injected photoswitchable protein, <em>Re</em>BphP-PCM, coupled to XTEN, allowing highly sensitive OAI. The sensitivity is one to two orders of magnitude greater than that of conventional synthetic dyes used currently in OA imaging. The high sensitivity afforded by photoswitching together with the enhanced bioavailability and biocompatibility of the XTENs-<em>Re</em>BphP-PCM make this a standard agent for high-quality detection of OAI with potential for clinical use.</div></div>","PeriodicalId":237,"journal":{"name":"Acta Biomaterialia","volume":"195 ","pages":"Pages 536-546"},"PeriodicalIF":9.4000,"publicationDate":"2025-03-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biomaterialia","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S174270612500087X","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Optoacoustic imaging (OAI) is a unique in vivo imaging technique combining deep tissue penetration with high resolution and molecular sensitivity. OAI relying on strong intrinsic contrast, such as blood hemoglobin, already shows its value in medical diagnostics. However, OAI sensitivity to current extrinsic contrast agents is insufficient and limits its role in detecting disease-related biomarkers. The recently introduced concept of photoswitching and temporal unmixing techniques for OAI allows detecting extrinsic contrast with high sensitivity, allowing the visualization of small populations of cells labeled with photoswitching proteins deep within the tissue. However, transgene modification might not be permitted in some cases, such as for diagnostic use. Therefore, it is desirable to leverage the concept of photoswitching OAI towards injectable formulations. Since photoswitchable synthetic dyes are mainly excited by blue wavelengths unsuited for imaging in tissue, we propose exploiting the addition of XTENs to photoswitching proteins towards yielding injectable agents. The addition of XTEN to a protein enhances its plasma half-life and bioavailability, thus allowing its use, for example, in targeted labeling approaches. In this pilot study, we show that intravenously injected near-infrared absorbing photoswitchable proteins, ReBphP-PCM, coupled to XTEN, allow highly sensitive optoacoustic visualization of a tumor xenograft in vivo. The sensitivity to XTENs-ReBphP-PCM determined by ex vivo analysis of labeled cells is one to two orders of magnitude beyond conventional synthetic dyes used currently in OAI. The enhanced sensitivity afforded by photoswitching OAI, in combination with the increased bioavailability and biocompatibility of XTENs-ReBphP-PCM, makes this fusion protein a promising tool for facilitating sensitive detection of biomarkers in OAI with a potential for future use in diagnostics.

Statement of significance

Optoacoustic imaging (OAI) is a unique in vivo imaging technique that combines deep tissue penetration with high resolution. OAI, which relies on intrinsic contrast, such as blood hemoglobin, could already be valuable in medical diagnostics. However, the use of extrinsic contrast agents to augment disease-related biomarkers in research and diagnostics suffers from very limited sensitivity of the generated contrast agent. We present an intravenously injected photoswitchable protein, ReBphP-PCM, coupled to XTEN, allowing highly sensitive OAI. The sensitivity is one to two orders of magnitude greater than that of conventional synthetic dyes used currently in OA imaging. The high sensitivity afforded by photoswitching together with the enhanced bioavailability and biocompatibility of the XTENs-ReBphP-PCM make this a standard agent for high-quality detection of OAI with potential for clinical use.

Abstract Image

求助全文
约1分钟内获得全文 求助全文
来源期刊
Acta Biomaterialia
Acta Biomaterialia 工程技术-材料科学:生物材料
CiteScore
16.80
自引率
3.10%
发文量
776
审稿时长
30 days
期刊介绍: Acta Biomaterialia is a monthly peer-reviewed scientific journal published by Elsevier. The journal was established in January 2005. The editor-in-chief is W.R. Wagner (University of Pittsburgh). The journal covers research in biomaterials science, including the interrelationship of biomaterial structure and function from macroscale to nanoscale. Topical coverage includes biomedical and biocompatible materials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信