Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER.

IF 11.1 Q1 CELL BIOLOGY
Cell genomics Pub Date : 2025-02-12 Epub Date: 2025-02-05 DOI:10.1016/j.xgen.2025.100766
Siyan Liu, Marisa C Hamilton, Thomas Cowart, Alejandro Barrera, Lexi R Bounds, Alexander C Nelson, Sophie F Dornbaum, Julia W Riley, Richard W Doty, Andrew S Allen, Gregory E Crawford, William H Majoros, Charles A Gersbach
{"title":"Characterization and bioinformatic filtering of ambient gRNAs in single-cell CRISPR screens using CLEANSER.","authors":"Siyan Liu, Marisa C Hamilton, Thomas Cowart, Alejandro Barrera, Lexi R Bounds, Alexander C Nelson, Sophie F Dornbaum, Julia W Riley, Richard W Doty, Andrew S Allen, Gregory E Crawford, William H Majoros, Charles A Gersbach","doi":"10.1016/j.xgen.2025.100766","DOIUrl":null,"url":null,"abstract":"<p><p>Single-cell RNA sequencing CRISPR (perturb-seq) screens enable high-throughput investigation of the genome, allowing for characterization of thousands of genomic perturbations on gene expression. Ambient gRNAs, which are contaminating gRNAs, are a major source of noise in perturb-seq experiments because they result in an excess of false-positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNAs in perturb-seq screens. We use these datasets to develop CRISPR Library Evaluation and Ambient Noise Suppression for Enhanced single-cell RNA-seq (CLEANSER), a mixture model that filters ambient gRNAs. CLEANSER includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy across multiple screen formats.</p>","PeriodicalId":72539,"journal":{"name":"Cell genomics","volume":" ","pages":"100766"},"PeriodicalIF":11.1000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11872138/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell genomics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.xgen.2025.100766","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell RNA sequencing CRISPR (perturb-seq) screens enable high-throughput investigation of the genome, allowing for characterization of thousands of genomic perturbations on gene expression. Ambient gRNAs, which are contaminating gRNAs, are a major source of noise in perturb-seq experiments because they result in an excess of false-positive gRNA assignments. Here, we utilize CRISPR barnyard assays to characterize ambient gRNAs in perturb-seq screens. We use these datasets to develop CRISPR Library Evaluation and Ambient Noise Suppression for Enhanced single-cell RNA-seq (CLEANSER), a mixture model that filters ambient gRNAs. CLEANSER includes both gRNA and cell-specific normalization parameters, correcting for confounding technical factors that affect individual gRNAs and cells. The output of CLEANSER is the probability that a gRNA-cell assignment is in the native distribution over the ambient distribution. We find that ambient gRNA filtering methods impact differential gene expression analysis outcomes and that CLEANSER outperforms alternate approaches by increasing gRNA-cell assignment accuracy across multiple screen formats.

使用cleaner在单细胞CRISPR筛选中对环境grna进行表征和生物信息学过滤。
单细胞RNA测序CRISPR (perturb-seq)筛选实现了基因组的高通量研究,允许表征数千个基因表达的基因组扰动。污染gRNA的环境gRNA是扰动序列实验中噪声的主要来源,因为它们会导致过量的假阳性gRNA分配。在这里,我们利用CRISPR谷仓试验来表征扰动序列屏幕中的环境grna。我们使用这些数据集开发用于增强单细胞RNA-seq (cleaner)的CRISPR文库评估和环境噪声抑制,这是一种过滤环境grna的混合模型。CLEANSER包括gRNA和细胞特异性正常化参数,纠正影响单个gRNA和细胞的混淆技术因素。cleaner的输出是grna细胞分配在本地分布中的概率,而不是环境分布。我们发现环境gRNA过滤方法会影响差异基因表达分析结果,而cleaner通过提高多种筛选格式的gRNA细胞分配准确性而优于其他方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.10
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信