Rita A Costa, Peter Hubbard, Manuel Manchado, Deborah M Power, Zélia Velez
{"title":"Olfactory specialization in the Senegalese sole (Solea senegalensis): CO<sub>2</sub> acidified water triggers nostril-specific immune processes.","authors":"Rita A Costa, Peter Hubbard, Manuel Manchado, Deborah M Power, Zélia Velez","doi":"10.1016/j.cbpa.2025.111820","DOIUrl":null,"url":null,"abstract":"<p><p>Increased carbon dioxide (CO<sub>2</sub>) in the ocean is changing seawater chemistry. Behavioural alterations in CO<sub>2</sub> exposed fish have been linked to changes in the central nervous system (CNS). However, we hypothesise that receptor cells in direct contact with the environment are more susceptible to changes in water chemistry than the CNS. Electrophysiology, histology, and transcriptomics were used to explore the effect of exposure to CO<sub>2</sub> acidified water on the olfactory epithelium (OE) of the Senegalese sole (Solea senegalensis). The upper and lower OE of this flatfish detect different odorants and are in contact with different environments. Acute exposure to acidified water decreased olfactory sensitivity more in the upper than in the lower OE. After chronic exposure to high CO<sub>2</sub> there was no histological changes in the upper OE, however, in the lower OE, there was a massive infiltration of melanomacrophage (MMC) and tissue disorganization. In addition, in the upper OE, differential expressed gene transcripts (DETs) were related to inflammation and innate immune processes whereas in the lower OE, DETs were related to the adaptative immune response. Differential regulation of genes related to neurogenesis and plasticity occurred in both epithelia. The effects of ocean acidification in sole OE depends on the nostril, however the occurrence of an exacerbated immune response, OE remodelling and reduced sensitivity indicate that ocean acidification is likely to have significant and unpredictable consequences for behaviour.</p>","PeriodicalId":55237,"journal":{"name":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","volume":" ","pages":"111820"},"PeriodicalIF":2.1000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Comparative Biochemistry and Physiology A-Molecular & Integrative Physiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.cbpa.2025.111820","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Increased carbon dioxide (CO2) in the ocean is changing seawater chemistry. Behavioural alterations in CO2 exposed fish have been linked to changes in the central nervous system (CNS). However, we hypothesise that receptor cells in direct contact with the environment are more susceptible to changes in water chemistry than the CNS. Electrophysiology, histology, and transcriptomics were used to explore the effect of exposure to CO2 acidified water on the olfactory epithelium (OE) of the Senegalese sole (Solea senegalensis). The upper and lower OE of this flatfish detect different odorants and are in contact with different environments. Acute exposure to acidified water decreased olfactory sensitivity more in the upper than in the lower OE. After chronic exposure to high CO2 there was no histological changes in the upper OE, however, in the lower OE, there was a massive infiltration of melanomacrophage (MMC) and tissue disorganization. In addition, in the upper OE, differential expressed gene transcripts (DETs) were related to inflammation and innate immune processes whereas in the lower OE, DETs were related to the adaptative immune response. Differential regulation of genes related to neurogenesis and plasticity occurred in both epithelia. The effects of ocean acidification in sole OE depends on the nostril, however the occurrence of an exacerbated immune response, OE remodelling and reduced sensitivity indicate that ocean acidification is likely to have significant and unpredictable consequences for behaviour.
期刊介绍:
Part A: Molecular & Integrative Physiology of Comparative Biochemistry and Physiology. This journal covers molecular, cellular, integrative, and ecological physiology. Topics include bioenergetics, circulation, development, excretion, ion regulation, endocrinology, neurobiology, nutrition, respiration, and thermal biology. Study on regulatory mechanisms at any level of organization such as signal transduction and cellular interaction and control of behavior are also published.