Ultrasound elastic modulus reconstruction using a deep learning model trained with simulated data.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-01-01 Epub Date: 2025-02-05 DOI:10.1117/1.JMI.12.1.017001
Utsav Ratna Tuladhar, Richard A Simon, Cristian A Linte, Michael S Richards
{"title":"Ultrasound elastic modulus reconstruction using a deep learning model trained with simulated data.","authors":"Utsav Ratna Tuladhar, Richard A Simon, Cristian A Linte, Michael S Richards","doi":"10.1117/1.JMI.12.1.017001","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by solving the inverse problem on the measured displacement field from the ultrasound images. The limitations of traditional inverse problem techniques in US elastography are either slow and computationally intensive (iterative techniques) or sensitive to measurement noise and dependent on full displacement field data (direct techniques). Thus, we develop and validate a deep learning approach for solving the inverse problem in US elastography. This involves recovering the spatial modulus distribution of the elastic modulus from one component of the US-measured displacement field.</p><p><strong>Approach: </strong>We present a U-Net-based deep learning neural network to address the inverse problem in ultrasound elastography. This approach diverges from traditional methods by focusing on a data-driven model. The neural network is trained using data generated from a forward finite element model. This simulation incorporates variations in the displacement fields that correspond to the elastic modulus distribution, allowing the network to learn without the need for extensive real-world measurement data. The inverse problem of predicting the modulus spatial distribution from ultrasound-measured displacement fields is addressed using a trained neural network. The neural network is evaluated with mean squared error (MSE) and mean absolute percentage error (MAPE) metrics. To extend our model to practical purposes, we conduct phantom experiments and also apply our model to clinical data.</p><p><strong>Results: </strong>Our simulated results indicate that our deep learning (DL) model effectively reconstructs modulus distributions, as evidenced by low MSE and MAPE evaluation metrics. We obtain a mean MAPE of 0.32% for a hard inclusion and 0.39% for a soft inclusion. Similarly, in our phantom studies, the predicted modulus ratio aligns with the expected range, affirming the model's accuracy. These findings, alongside evaluations using the modulus ratio and contrast-to-noise ratio, confirm our DL model's robust generalization capabilities across diverse datasets.</p><p><strong>Conclusions: </strong>The presented work demonstrated that provided the simulated data are sufficiently diverse and representative of a wide variability, the algorithm trained on simulated data would generalize well to both phantom, as well as real-world clinical data.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 1","pages":"017001"},"PeriodicalIF":1.9000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11796470/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.1.017001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/5 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Ultrasound (US) elastography is a technique for non-invasive quantification of material properties, such as stiffness, from ultrasound images of deforming tissue. The material properties are calculated by solving the inverse problem on the measured displacement field from the ultrasound images. The limitations of traditional inverse problem techniques in US elastography are either slow and computationally intensive (iterative techniques) or sensitive to measurement noise and dependent on full displacement field data (direct techniques). Thus, we develop and validate a deep learning approach for solving the inverse problem in US elastography. This involves recovering the spatial modulus distribution of the elastic modulus from one component of the US-measured displacement field.

Approach: We present a U-Net-based deep learning neural network to address the inverse problem in ultrasound elastography. This approach diverges from traditional methods by focusing on a data-driven model. The neural network is trained using data generated from a forward finite element model. This simulation incorporates variations in the displacement fields that correspond to the elastic modulus distribution, allowing the network to learn without the need for extensive real-world measurement data. The inverse problem of predicting the modulus spatial distribution from ultrasound-measured displacement fields is addressed using a trained neural network. The neural network is evaluated with mean squared error (MSE) and mean absolute percentage error (MAPE) metrics. To extend our model to practical purposes, we conduct phantom experiments and also apply our model to clinical data.

Results: Our simulated results indicate that our deep learning (DL) model effectively reconstructs modulus distributions, as evidenced by low MSE and MAPE evaluation metrics. We obtain a mean MAPE of 0.32% for a hard inclusion and 0.39% for a soft inclusion. Similarly, in our phantom studies, the predicted modulus ratio aligns with the expected range, affirming the model's accuracy. These findings, alongside evaluations using the modulus ratio and contrast-to-noise ratio, confirm our DL model's robust generalization capabilities across diverse datasets.

Conclusions: The presented work demonstrated that provided the simulated data are sufficiently diverse and representative of a wide variability, the algorithm trained on simulated data would generalize well to both phantom, as well as real-world clinical data.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信