Individualized resting-state functional connectivity abnormalities unveil two major depressive disorder subtypes with contrasting abnormal patterns of abnormality.
{"title":"Individualized resting-state functional connectivity abnormalities unveil two major depressive disorder subtypes with contrasting abnormal patterns of abnormality.","authors":"Keke Fang, Lianjie Niu, Baohong Wen, Liang Liu, Ya Tian, Huiting Yang, Ying Hou, Shaoqiang Han, Xianfu Sun, Wenzhou Zhang","doi":"10.1038/s41398-025-03268-9","DOIUrl":null,"url":null,"abstract":"<p><p>Modern neuroimaging research has recognized that major depressive disorder (MDD) is a connectome disorder, characterized by altered functional connectivity across large-scale brain networks. However, the clinical heterogeneity, likely stemming from diverse neurobiological disturbances, complicates findings from standard group comparison methods. This variability has driven the search for MDD subtypes using objective neuroimaging markers. In this study, we sought to identify potential MDD subtypes from subject-level abnormalities in functional connectivity, leveraging a large multi-site dataset of resting-state MRI from 1276 MDD patients and 1104 matched healthy controls. Subject-level extreme functional connections, determined by comparing against normative ranges derived from healthy controls using tolerance intervals, were used to identify biological subtypes of MDD. We identified a set of extreme functional connections that were predominantly between the visual network and the frontoparietal network, the default mode network and the ventral attention network, with the key regions in the anterior cingulate cortex, bilateral orbitofrontal cortex, and supramarginal gyrus. In MDD patients, these extreme functional connections were linked to age of onset and reward-related processes. Using these features, we identified two subtypes with distinct patterns of functional connectivity abnormalities compared to healthy controls (p < 0.05, Bonferroni correction). When considering all patients together, no significant differences were found. These subtypes significantly enhanced case-control discriminability and showed strong internal discriminability between subtypes. Furthermore, the subtypes were reproducible across varying parameters, study sites, and in untreated patients. Our findings provide new insights into the taxonomy and have potential implications for both diagnosis and treatment of MDD.</p>","PeriodicalId":23278,"journal":{"name":"Translational Psychiatry","volume":"15 1","pages":"45"},"PeriodicalIF":5.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11802875/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Translational Psychiatry","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41398-025-03268-9","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PSYCHIATRY","Score":null,"Total":0}
引用次数: 0
Abstract
Modern neuroimaging research has recognized that major depressive disorder (MDD) is a connectome disorder, characterized by altered functional connectivity across large-scale brain networks. However, the clinical heterogeneity, likely stemming from diverse neurobiological disturbances, complicates findings from standard group comparison methods. This variability has driven the search for MDD subtypes using objective neuroimaging markers. In this study, we sought to identify potential MDD subtypes from subject-level abnormalities in functional connectivity, leveraging a large multi-site dataset of resting-state MRI from 1276 MDD patients and 1104 matched healthy controls. Subject-level extreme functional connections, determined by comparing against normative ranges derived from healthy controls using tolerance intervals, were used to identify biological subtypes of MDD. We identified a set of extreme functional connections that were predominantly between the visual network and the frontoparietal network, the default mode network and the ventral attention network, with the key regions in the anterior cingulate cortex, bilateral orbitofrontal cortex, and supramarginal gyrus. In MDD patients, these extreme functional connections were linked to age of onset and reward-related processes. Using these features, we identified two subtypes with distinct patterns of functional connectivity abnormalities compared to healthy controls (p < 0.05, Bonferroni correction). When considering all patients together, no significant differences were found. These subtypes significantly enhanced case-control discriminability and showed strong internal discriminability between subtypes. Furthermore, the subtypes were reproducible across varying parameters, study sites, and in untreated patients. Our findings provide new insights into the taxonomy and have potential implications for both diagnosis and treatment of MDD.
期刊介绍:
Psychiatry has suffered tremendously by the limited translational pipeline. Nobel laureate Julius Axelrod''s discovery in 1961 of monoamine reuptake by pre-synaptic neurons still forms the basis of contemporary antidepressant treatment. There is a grievous gap between the explosion of knowledge in neuroscience and conceptually novel treatments for our patients. Translational Psychiatry bridges this gap by fostering and highlighting the pathway from discovery to clinical applications, healthcare and global health. We view translation broadly as the full spectrum of work that marks the pathway from discovery to global health, inclusive. The steps of translation that are within the scope of Translational Psychiatry include (i) fundamental discovery, (ii) bench to bedside, (iii) bedside to clinical applications (clinical trials), (iv) translation to policy and health care guidelines, (v) assessment of health policy and usage, and (vi) global health. All areas of medical research, including — but not restricted to — molecular biology, genetics, pharmacology, imaging and epidemiology are welcome as they contribute to enhance the field of translational psychiatry.