Interactions Between Mesenchymal Stem Cells and Microorganisms: Unraveling the Paradox for Enhanced Mesenchymal Stem Cell-Based Therapy.

IF 5.1 2区 医学 Q2 CELL & TISSUE ENGINEERING
Ensiyeh Kord-Parijaee, Elaheh Ferdosi-Shahandashti, Nasim Hafezi
{"title":"Interactions Between Mesenchymal Stem Cells and Microorganisms: Unraveling the Paradox for Enhanced Mesenchymal Stem Cell-Based Therapy.","authors":"Ensiyeh Kord-Parijaee, Elaheh Ferdosi-Shahandashti, Nasim Hafezi","doi":"10.1089/ten.teb.2024.0334","DOIUrl":null,"url":null,"abstract":"<p><p>Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic tool in stem cell-based therapy due to their immunomodulatory or regenerative characteristics. Nowadays, controlled application of nonpathogenic bacterial cells and their derivatives has shown promise in preconditioning and manipulating MSC behavior. This approach is being explored in various fields, including immunotherapy, tissue engineering, and cell therapy. However, recent discoveries have elucidated the complex interactions between MSCs and microorganisms, especially bacteria and viruses, raising concerns regarding the utility of MSCs in clinical applications. In this review, we discussed the interactions between MSCs and microorganisms and highlighted both positive and negative aspects. We also examined the use of bacterial-derived compounds in MSCs-mediated interventions. The balanced colonization of the microbiome in organs, such as the oral cavity, not only does not hinder therapeutic interventions but also could be crucial for achieving desirable outcomes. On the contrary, disturbances in the microbiome have been found to disturb the biological potential of MSCs, such as migration, osteogenic differentiation, and cell proliferation. Evidence also suggests that commensal bacteria, following certain interventions, can transition to a pathogenic state when interacting with MSCs, leading to acute inflammation. Indeed, the maintenance of homeostasis through various approaches, such as probiotic application, results in an optimal equilibrium during MSCs-based therapies. However, further investigation into this matter is imperative to identify efficacious interventions.</p>","PeriodicalId":23134,"journal":{"name":"Tissue Engineering. Part B, Reviews","volume":" ","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue Engineering. Part B, Reviews","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1089/ten.teb.2024.0334","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
引用次数: 0

Abstract

Mesenchymal stem cells (MSCs) have emerged as a promising therapeutic tool in stem cell-based therapy due to their immunomodulatory or regenerative characteristics. Nowadays, controlled application of nonpathogenic bacterial cells and their derivatives has shown promise in preconditioning and manipulating MSC behavior. This approach is being explored in various fields, including immunotherapy, tissue engineering, and cell therapy. However, recent discoveries have elucidated the complex interactions between MSCs and microorganisms, especially bacteria and viruses, raising concerns regarding the utility of MSCs in clinical applications. In this review, we discussed the interactions between MSCs and microorganisms and highlighted both positive and negative aspects. We also examined the use of bacterial-derived compounds in MSCs-mediated interventions. The balanced colonization of the microbiome in organs, such as the oral cavity, not only does not hinder therapeutic interventions but also could be crucial for achieving desirable outcomes. On the contrary, disturbances in the microbiome have been found to disturb the biological potential of MSCs, such as migration, osteogenic differentiation, and cell proliferation. Evidence also suggests that commensal bacteria, following certain interventions, can transition to a pathogenic state when interacting with MSCs, leading to acute inflammation. Indeed, the maintenance of homeostasis through various approaches, such as probiotic application, results in an optimal equilibrium during MSCs-based therapies. However, further investigation into this matter is imperative to identify efficacious interventions.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Tissue Engineering. Part B, Reviews
Tissue Engineering. Part B, Reviews Biochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
12.80
自引率
1.60%
发文量
150
期刊介绍: Tissue Engineering Reviews (Part B) meets the urgent need for high-quality review articles by presenting critical literature overviews and systematic summaries of research within the field to assess the current standing and future directions within relevant areas and technologies. Part B publishes bi-monthly.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信