{"title":"Advanced AI-assisted panoramic radiograph analysis for periodontal prognostication and alveolar bone loss detection.","authors":"Jarupat Jundaeng, Rapeeporn Chamchong, Choosak Nithikathkul","doi":"10.3389/fdmed.2024.1509361","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Periodontitis is a chronic inflammatory disease affecting the gingival tissues and supporting structures of the teeth, often leading to tooth loss. The condition begins with the accumulation of dental plaque, which initiates an immune response. Current radiographic methods for assessing alveolar bone loss are subjective, time-consuming, and labor-intensive. This study aims to develop an AI-driven model using Convolutional Neural Networks (CNNs) to accurately assess alveolar bone loss and provide individualized periodontal prognoses from panoramic radiographs.</p><p><strong>Methods: </strong>A total of 2,000 panoramic radiographs were collected using the same device, based on the periodontal diagnosis codes from the HOSxP Program. Image enhancement techniques were applied, and an AI model based on YOLOv8 was developed to segment teeth, identify the cemento-enamel junction (CEJ), and assess alveolar bone levels. The model quantified bone loss and classified prognoses for each tooth.</p><p><strong>Results: </strong>The teeth segmentation model achieved 97% accuracy, 90% sensitivity, 96% specificity, and an F1 score of 0.80. The CEJ and bone level segmentation model showed superior results with 98% accuracy, 100% sensitivity, 98% specificity, and an F1 score of 0.90. These findings confirm the models' effectiveness in analyzing panoramic radiographs for periodontal bone loss detection and prognostication.</p><p><strong>Conclusion: </strong>This AI model offers a state-of-the-art approach for assessing alveolar bone loss and predicting individualized periodontal prognoses. It provides a faster, more accurate, and less labor-intensive alternative to current methods, demonstrating its potential for improving periodontal diagnosis and patient outcomes.</p>","PeriodicalId":73077,"journal":{"name":"Frontiers in dental medicine","volume":"5 ","pages":"1509361"},"PeriodicalIF":1.5000,"publicationDate":"2025-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11797906/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in dental medicine","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fdmed.2024.1509361","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"DENTISTRY, ORAL SURGERY & MEDICINE","Score":null,"Total":0}
引用次数: 0
Abstract
Background: Periodontitis is a chronic inflammatory disease affecting the gingival tissues and supporting structures of the teeth, often leading to tooth loss. The condition begins with the accumulation of dental plaque, which initiates an immune response. Current radiographic methods for assessing alveolar bone loss are subjective, time-consuming, and labor-intensive. This study aims to develop an AI-driven model using Convolutional Neural Networks (CNNs) to accurately assess alveolar bone loss and provide individualized periodontal prognoses from panoramic radiographs.
Methods: A total of 2,000 panoramic radiographs were collected using the same device, based on the periodontal diagnosis codes from the HOSxP Program. Image enhancement techniques were applied, and an AI model based on YOLOv8 was developed to segment teeth, identify the cemento-enamel junction (CEJ), and assess alveolar bone levels. The model quantified bone loss and classified prognoses for each tooth.
Results: The teeth segmentation model achieved 97% accuracy, 90% sensitivity, 96% specificity, and an F1 score of 0.80. The CEJ and bone level segmentation model showed superior results with 98% accuracy, 100% sensitivity, 98% specificity, and an F1 score of 0.90. These findings confirm the models' effectiveness in analyzing panoramic radiographs for periodontal bone loss detection and prognostication.
Conclusion: This AI model offers a state-of-the-art approach for assessing alveolar bone loss and predicting individualized periodontal prognoses. It provides a faster, more accurate, and less labor-intensive alternative to current methods, demonstrating its potential for improving periodontal diagnosis and patient outcomes.