Pair correlation microscopy of intracellular molecular transport.

IF 13.1 1区 生物学 Q1 BIOCHEMICAL RESEARCH METHODS
Julissa Sanchez-Velasquez, Ashleigh Solano, Michelle A Digman, Enrico Gratton, Francesco Cardarelli, Elizabeth Hinde
{"title":"Pair correlation microscopy of intracellular molecular transport.","authors":"Julissa Sanchez-Velasquez, Ashleigh Solano, Michelle A Digman, Enrico Gratton, Francesco Cardarelli, Elizabeth Hinde","doi":"10.1038/s41596-024-01097-6","DOIUrl":null,"url":null,"abstract":"<p><p>Pair correlation microscopy is a unique approach to fluorescence correlation spectroscopy that can track the long-range diffusive route of a population of fluorescent molecules in live cells with respect to intracellular architecture. This method is based on the use of a pair correlation function (pCF) that, through spatiotemporal comparison of fluctuations in fluorescence intensity recorded throughout a microscope data acquisition, enables changes in a molecule's arrival time to be spatially mapped and statistically quantified. In this protocol, we present guidelines for the measurement and analysis of line scan pair correlation microscopy data acquired on a confocal laser scanning microscope (CLSM), which will enable users to extract a fluorescent molecule's transport pattern throughout a living cell, and then quantify the molecular accessibility of intracellular barriers encountered or the mode of diffusion governing a molecular trafficking event. Finally, we demonstrate how this protocol can be extended to a two-channel line scan acquisition that, when coupled with a cross pCF calculation, enables a fluorescent molecule's transport pattern to be selectively tracked as a function of complex formation with a spectrally distinct fluorescent ligand. For a skilled user of a CLSM, the line scan data acquisition and analysis described in this protocol will take ~1-2 d, depending on the sample and the number of experiments to be processed.</p>","PeriodicalId":18901,"journal":{"name":"Nature Protocols","volume":" ","pages":""},"PeriodicalIF":13.1000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Protocols","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1038/s41596-024-01097-6","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0

Abstract

Pair correlation microscopy is a unique approach to fluorescence correlation spectroscopy that can track the long-range diffusive route of a population of fluorescent molecules in live cells with respect to intracellular architecture. This method is based on the use of a pair correlation function (pCF) that, through spatiotemporal comparison of fluctuations in fluorescence intensity recorded throughout a microscope data acquisition, enables changes in a molecule's arrival time to be spatially mapped and statistically quantified. In this protocol, we present guidelines for the measurement and analysis of line scan pair correlation microscopy data acquired on a confocal laser scanning microscope (CLSM), which will enable users to extract a fluorescent molecule's transport pattern throughout a living cell, and then quantify the molecular accessibility of intracellular barriers encountered or the mode of diffusion governing a molecular trafficking event. Finally, we demonstrate how this protocol can be extended to a two-channel line scan acquisition that, when coupled with a cross pCF calculation, enables a fluorescent molecule's transport pattern to be selectively tracked as a function of complex formation with a spectrally distinct fluorescent ligand. For a skilled user of a CLSM, the line scan data acquisition and analysis described in this protocol will take ~1-2 d, depending on the sample and the number of experiments to be processed.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Nature Protocols
Nature Protocols 生物-生化研究方法
CiteScore
29.10
自引率
0.70%
发文量
128
审稿时长
4 months
期刊介绍: Nature Protocols focuses on publishing protocols used to address significant biological and biomedical science research questions, including methods grounded in physics and chemistry with practical applications to biological problems. The journal caters to a primary audience of research scientists and, as such, exclusively publishes protocols with research applications. Protocols primarily aimed at influencing patient management and treatment decisions are not featured. The specific techniques covered encompass a wide range, including but not limited to: Biochemistry, Cell biology, Cell culture, Chemical modification, Computational biology, Developmental biology, Epigenomics, Genetic analysis, Genetic modification, Genomics, Imaging, Immunology, Isolation, purification, and separation, Lipidomics, Metabolomics, Microbiology, Model organisms, Nanotechnology, Neuroscience, Nucleic-acid-based molecular biology, Pharmacology, Plant biology, Protein analysis, Proteomics, Spectroscopy, Structural biology, Synthetic chemistry, Tissue culture, Toxicology, and Virology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信