Brian M Holt, Justin M Stine, Luke A Beardslee, Hammed Ayansola, Younggeon Jin, Pankaj J Pasricha, Reza Ghodssi
{"title":"An ingestible bioimpedance sensing device for wireless monitoring of epithelial barriers.","authors":"Brian M Holt, Justin M Stine, Luke A Beardslee, Hammed Ayansola, Younggeon Jin, Pankaj J Pasricha, Reza Ghodssi","doi":"10.1038/s41378-025-00877-8","DOIUrl":null,"url":null,"abstract":"<p><p>Existing gastrointestinal (GI) diagnostic tools are unable to non-invasively monitor mucosal tight junction integrity in vivo beyond the esophagus. In the GI tract, local inflammatory processes induce alterations in tight junction proteins, enhancing paracellular ion permeability. Although transepithelial electrical resistance (TEER) may be used in the laboratory to assess mucosal barrier integrity, there are no existing methodologies for characterizing tight junction dilation in vivo. Addressing this technology gap, intraluminal bioimpedance sensing may be employed as a localized, non-invasive surrogate to TEER electrodes used in cell cultures. Thus far, bioimpedance has only been implemented in esophagogastroduodenoscopy (EGD) due to the need for external electronics connections. In this work, we develop a novel, noise-resilient Bluetooth-enabled ingestible device for the continuous, non-invasive measurement of intestinal mucosal \"leakiness.\" As a proof-of-concept, we validate wireless impedance readout on excised porcine tissues in motion. Through an animal study, we demonstrate how the device exhibits altered impedance response to tight junction dilation induced on mice colonic tissue through calcium-chelator exposure. Device measurements are validated using standard benchtop methods for assessing mucosal permeability.</p>","PeriodicalId":18560,"journal":{"name":"Microsystems & Nanoengineering","volume":"11 1","pages":"24"},"PeriodicalIF":7.3000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microsystems & Nanoengineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1038/s41378-025-00877-8","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0
Abstract
Existing gastrointestinal (GI) diagnostic tools are unable to non-invasively monitor mucosal tight junction integrity in vivo beyond the esophagus. In the GI tract, local inflammatory processes induce alterations in tight junction proteins, enhancing paracellular ion permeability. Although transepithelial electrical resistance (TEER) may be used in the laboratory to assess mucosal barrier integrity, there are no existing methodologies for characterizing tight junction dilation in vivo. Addressing this technology gap, intraluminal bioimpedance sensing may be employed as a localized, non-invasive surrogate to TEER electrodes used in cell cultures. Thus far, bioimpedance has only been implemented in esophagogastroduodenoscopy (EGD) due to the need for external electronics connections. In this work, we develop a novel, noise-resilient Bluetooth-enabled ingestible device for the continuous, non-invasive measurement of intestinal mucosal "leakiness." As a proof-of-concept, we validate wireless impedance readout on excised porcine tissues in motion. Through an animal study, we demonstrate how the device exhibits altered impedance response to tight junction dilation induced on mice colonic tissue through calcium-chelator exposure. Device measurements are validated using standard benchtop methods for assessing mucosal permeability.
期刊介绍:
Microsystems & Nanoengineering is a comprehensive online journal that focuses on the field of Micro and Nano Electro Mechanical Systems (MEMS and NEMS). It provides a platform for researchers to share their original research findings and review articles in this area. The journal covers a wide range of topics, from fundamental research to practical applications. Published by Springer Nature, in collaboration with the Aerospace Information Research Institute, Chinese Academy of Sciences, and with the support of the State Key Laboratory of Transducer Technology, it is an esteemed publication in the field. As an open access journal, it offers free access to its content, allowing readers from around the world to benefit from the latest developments in MEMS and NEMS.