ENO1-BACE2-mediated LDLR cleavage promotes liver cancer progression by remodelling cholesterol metabolism.

IF 5.3 2区 生物学 Q2 CELL BIOLOGY
Zhikun Li, Kaixiang Fan, Caixia Suo, Xuemei Gu, Chuxu Zhu, Haoran Wei, Liang Chen, Ping Gao, Linchong Sun
{"title":"ENO1-BACE2-mediated LDLR cleavage promotes liver cancer progression by remodelling cholesterol metabolism.","authors":"Zhikun Li, Kaixiang Fan, Caixia Suo, Xuemei Gu, Chuxu Zhu, Haoran Wei, Liang Chen, Ping Gao, Linchong Sun","doi":"10.1093/jmcb/mjaf001","DOIUrl":null,"url":null,"abstract":"<p><p>Enolase 1 (ENO1) is a glycolytic enzyme involved in tumour progression that performs a variety of classical and nonclassical functions. However, the mechanism by which it promotes tumour progression is still not fully understood. Here, we found that ENO1 can bind to β-site amyloid precursor protein cleaving enzyme 2 (BACE2), a codependent gene of ENO1, in liver cancer cells. By suppressing lysosomal-dependent degradation, ENO1 stabilises BACE2 protein level without affecting its mRNA level. Further analysis revealed that ENO1 and BACE2 promote low-density lipoprotein receptor (LDLR) cleavage, leading to decreased absorption of exogenous cholesterol. To maintain intracellular cholesterol levels, ENO1 and BACE2 upregulate the expression of genes involved in de novo cholesterol synthesis through a negative feedback mechanism. Both in vitro and in vivo, BACE2 mediates the tumour-promoting effect of ENO1 in liver cancer. Finally, high expression levels of ENO1 and BACE2 and low expression levels of LDLR were detected in clinical HCC samples, and abnormal expression of the ENO1-BACE2-LDLR axis was significantly associated with poor prognosis in patients with liver cancer. These data collectively demonstrated that ENO1 functions in protein cleavage by binding to BACE2 and promotes liver cancer progression by reprogramming cholesterol metabolism.</p>","PeriodicalId":16433,"journal":{"name":"Journal of Molecular Cell Biology","volume":" ","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Molecular Cell Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/jmcb/mjaf001","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Enolase 1 (ENO1) is a glycolytic enzyme involved in tumour progression that performs a variety of classical and nonclassical functions. However, the mechanism by which it promotes tumour progression is still not fully understood. Here, we found that ENO1 can bind to β-site amyloid precursor protein cleaving enzyme 2 (BACE2), a codependent gene of ENO1, in liver cancer cells. By suppressing lysosomal-dependent degradation, ENO1 stabilises BACE2 protein level without affecting its mRNA level. Further analysis revealed that ENO1 and BACE2 promote low-density lipoprotein receptor (LDLR) cleavage, leading to decreased absorption of exogenous cholesterol. To maintain intracellular cholesterol levels, ENO1 and BACE2 upregulate the expression of genes involved in de novo cholesterol synthesis through a negative feedback mechanism. Both in vitro and in vivo, BACE2 mediates the tumour-promoting effect of ENO1 in liver cancer. Finally, high expression levels of ENO1 and BACE2 and low expression levels of LDLR were detected in clinical HCC samples, and abnormal expression of the ENO1-BACE2-LDLR axis was significantly associated with poor prognosis in patients with liver cancer. These data collectively demonstrated that ENO1 functions in protein cleavage by binding to BACE2 and promotes liver cancer progression by reprogramming cholesterol metabolism.

eno1 - bace2介导的LDLR裂解通过重塑胆固醇代谢促进肝癌进展。
烯醇化酶1 (ENO1)是一种参与肿瘤进展的糖酵解酶,具有多种经典和非经典功能。然而,它促进肿瘤进展的机制仍未完全了解。本研究发现,在肝癌细胞中,ENO1可以与ENO1的共依赖基因β-位点淀粉样蛋白前体蛋白切割酶2 (BACE2)结合。通过抑制溶酶体依赖性降解,ENO1稳定BACE2蛋白水平而不影响其mRNA水平。进一步分析表明,ENO1和BACE2促进低密度脂蛋白受体(LDLR)的裂解,导致外源胆固醇的吸收减少。为了维持细胞内胆固醇水平,ENO1和BACE2通过负反馈机制上调参与从头胆固醇合成的基因的表达。在体内和体外实验中,BACE2介导ENO1在肝癌中的促瘤作用。最后,临床HCC样本中ENO1、BACE2高表达,LDLR低表达,ENO1-BACE2-LDLR轴异常表达与肝癌患者预后不良显著相关。这些数据共同表明,ENO1通过与BACE2结合在蛋白质切割中起作用,并通过重编程胆固醇代谢促进肝癌进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
9.60
自引率
1.80%
发文量
1383
期刊介绍: The Journal of Molecular Cell Biology ( JMCB ) is a full open access, peer-reviewed online journal interested in inter-disciplinary studies at the cross-sections between molecular and cell biology as well as other disciplines of life sciences. The broad scope of JMCB reflects the merging of these life science disciplines such as stem cell research, signaling, genetics, epigenetics, genomics, development, immunology, cancer biology, molecular pathogenesis, neuroscience, and systems biology. The journal will publish primary research papers with findings of unusual significance and broad scientific interest. Review articles, letters and commentary on timely issues are also welcome. JMCB features an outstanding Editorial Board, which will serve as scientific advisors to the journal and provide strategic guidance for the development of the journal. By selecting only the best papers for publication, JMCB will provide a first rate publishing forum for scientists all over the world.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信