Soil warming increases the active antibiotic resistome in the gut of invasive giant African snails.

IF 13.8 1区 生物学 Q1 MICROBIOLOGY
Yiyue Zhang, Hong-Zhe Li, Martin Breed, Zhonghui Tang, Li Cui, Yong-Guan Zhu, Xin Sun
{"title":"Soil warming increases the active antibiotic resistome in the gut of invasive giant African snails.","authors":"Yiyue Zhang, Hong-Zhe Li, Martin Breed, Zhonghui Tang, Li Cui, Yong-Guan Zhu, Xin Sun","doi":"10.1186/s40168-025-02044-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Global warming is redrawing the map for invasive species, spotlighting the globally harmful giant African snail as a major ecological disruptor and public health threat. Known for harboring extensive antibiotic resistance genes (ARGs) and human pathogens, it remains uncertain whether global warming exacerbates these associated health risks.</p><p><strong>Methods: </strong>We use phenotype-based single-cell Raman with D<sub>2</sub>O labeling (Raman-D<sub>2</sub>O) and genotype-based metagenomic sequencing to investigate whether soil warming increases active antibiotic-resistant bacteria (ARBs) in the gut microbiome of giant African snails.</p><p><strong>Results: </strong>We show a significant increase in beta-lactam phenotypic resistance of active ARBs with rising soil temperatures, mirrored by a surge in beta-lactamase genes such as SHV, TEM, OCH, OKP, and LEN subtypes. Through a correlation analysis between the abundance of phenotypically active ARBs and genotypically ARG-carrying gut microbes, we identify species that contribute to the increased activity of antibiotic resistome under soil warming. Among 299 high-quality ARG-carrying metagenome-assembled genomes (MAGs), we further revealed that the soil warming enhances the abundance of \"supercarriers\" including human pathogens with multiple ARGs and virulence factors. Furthermore, we identified elevated biosynthetic gene clusters (BGCs) within these ARG-carrying MAGs, with a third encoding at least one BGC. This suggests a link between active ARBs and secondary metabolism, enhancing the environmental adaptability and competitive advantage of these organisms in warmer environments.</p><p><strong>Conclusions: </strong>The study underscores the complex interactions between soil warming and antibiotic resistance in the gut microbiome of the giant African snail, highlighting a potential escalation in environmental health risks due to global warming. These findings emphasize the urgent need for integrated environmental and health strategies to manage the rising threat of antibiotic resistance in the context of global climate change. Video Abstract.</p>","PeriodicalId":18447,"journal":{"name":"Microbiome","volume":"13 1","pages":"42"},"PeriodicalIF":13.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11800439/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbiome","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1186/s40168-025-02044-7","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Background: Global warming is redrawing the map for invasive species, spotlighting the globally harmful giant African snail as a major ecological disruptor and public health threat. Known for harboring extensive antibiotic resistance genes (ARGs) and human pathogens, it remains uncertain whether global warming exacerbates these associated health risks.

Methods: We use phenotype-based single-cell Raman with D2O labeling (Raman-D2O) and genotype-based metagenomic sequencing to investigate whether soil warming increases active antibiotic-resistant bacteria (ARBs) in the gut microbiome of giant African snails.

Results: We show a significant increase in beta-lactam phenotypic resistance of active ARBs with rising soil temperatures, mirrored by a surge in beta-lactamase genes such as SHV, TEM, OCH, OKP, and LEN subtypes. Through a correlation analysis between the abundance of phenotypically active ARBs and genotypically ARG-carrying gut microbes, we identify species that contribute to the increased activity of antibiotic resistome under soil warming. Among 299 high-quality ARG-carrying metagenome-assembled genomes (MAGs), we further revealed that the soil warming enhances the abundance of "supercarriers" including human pathogens with multiple ARGs and virulence factors. Furthermore, we identified elevated biosynthetic gene clusters (BGCs) within these ARG-carrying MAGs, with a third encoding at least one BGC. This suggests a link between active ARBs and secondary metabolism, enhancing the environmental adaptability and competitive advantage of these organisms in warmer environments.

Conclusions: The study underscores the complex interactions between soil warming and antibiotic resistance in the gut microbiome of the giant African snail, highlighting a potential escalation in environmental health risks due to global warming. These findings emphasize the urgent need for integrated environmental and health strategies to manage the rising threat of antibiotic resistance in the context of global climate change. Video Abstract.

求助全文
约1分钟内获得全文 求助全文
来源期刊
Microbiome
Microbiome MICROBIOLOGY-
CiteScore
21.90
自引率
2.60%
发文量
198
审稿时长
4 weeks
期刊介绍: Microbiome is a journal that focuses on studies of microbiomes in humans, animals, plants, and the environment. It covers both natural and manipulated microbiomes, such as those in agriculture. The journal is interested in research that uses meta-omics approaches or novel bioinformatics tools and emphasizes the community/host interaction and structure-function relationship within the microbiome. Studies that go beyond descriptive omics surveys and include experimental or theoretical approaches will be considered for publication. The journal also encourages research that establishes cause and effect relationships and supports proposed microbiome functions. However, studies of individual microbial isolates/species without exploring their impact on the host or the complex microbiome structures and functions will not be considered for publication. Microbiome is indexed in BIOSIS, Current Contents, DOAJ, Embase, MEDLINE, PubMed, PubMed Central, and Science Citations Index Expanded.
文献相关原料
公司名称
产品信息
阿拉丁
Nycodenz solution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信