Dennis Khodasevich, Nina Holland, Lars van der Laan, Andres Cardenas
{"title":"A SuperLearner-based pipeline for the development of DNA methylation-derived predictors of phenotypic traits.","authors":"Dennis Khodasevich, Nina Holland, Lars van der Laan, Andres Cardenas","doi":"10.1371/journal.pcbi.1012768","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>DNA methylation (DNAm) provides a window to characterize the impacts of environmental exposures and the biological aging process. Epigenetic clocks are often trained on DNAm using penalized regression of CpG sites, but recent evidence suggests potential benefits of training epigenetic predictors on principal components.</p><p><strong>Methodology/findings: </strong>We developed a pipeline to simultaneously train three epigenetic predictors; a traditional CpG Clock, a PCA Clock, and a SuperLearner PCA Clock (SL PCA). We gathered publicly available DNAm datasets to generate i) a novel childhood epigenetic clock, ii) a reconstructed Hannum adult blood clock, and iii) as a proof of concept, a predictor of polybrominated biphenyl exposure using the three developmental methodologies. We used correlation coefficients and median absolute error to assess fit between predicted and observed measures, as well as agreement between duplicates. The SL PCA clocks improved fit with observed phenotypes relative to the PCA clocks or CpG clocks across several datasets. We found evidence for higher agreement between duplicate samples run on alternate DNAm arrays when using SL PCA clocks relative to traditional methods. Analyses examining associations between relevant exposures and epigenetic age acceleration (EAA) produced more precise effect estimates when using predictions derived from SL PCA clocks.</p><p><strong>Conclusions: </strong>We introduce a novel method for the development of DNAm-based predictors that combines the improved reliability conferred by training on principal components with advanced ensemble-based machine learning. Coupling SuperLearner with PCA in the predictor development process may be especially relevant for studies with longitudinal designs utilizing multiple array types, as well as for the development of predictors of more complex phenotypic traits.</p>","PeriodicalId":20241,"journal":{"name":"PLoS Computational Biology","volume":"21 2","pages":"e1012768"},"PeriodicalIF":3.8000,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11801726/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"PLoS Computational Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1371/journal.pcbi.1012768","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Background: DNA methylation (DNAm) provides a window to characterize the impacts of environmental exposures and the biological aging process. Epigenetic clocks are often trained on DNAm using penalized regression of CpG sites, but recent evidence suggests potential benefits of training epigenetic predictors on principal components.
Methodology/findings: We developed a pipeline to simultaneously train three epigenetic predictors; a traditional CpG Clock, a PCA Clock, and a SuperLearner PCA Clock (SL PCA). We gathered publicly available DNAm datasets to generate i) a novel childhood epigenetic clock, ii) a reconstructed Hannum adult blood clock, and iii) as a proof of concept, a predictor of polybrominated biphenyl exposure using the three developmental methodologies. We used correlation coefficients and median absolute error to assess fit between predicted and observed measures, as well as agreement between duplicates. The SL PCA clocks improved fit with observed phenotypes relative to the PCA clocks or CpG clocks across several datasets. We found evidence for higher agreement between duplicate samples run on alternate DNAm arrays when using SL PCA clocks relative to traditional methods. Analyses examining associations between relevant exposures and epigenetic age acceleration (EAA) produced more precise effect estimates when using predictions derived from SL PCA clocks.
Conclusions: We introduce a novel method for the development of DNAm-based predictors that combines the improved reliability conferred by training on principal components with advanced ensemble-based machine learning. Coupling SuperLearner with PCA in the predictor development process may be especially relevant for studies with longitudinal designs utilizing multiple array types, as well as for the development of predictors of more complex phenotypic traits.
期刊介绍:
PLOS Computational Biology features works of exceptional significance that further our understanding of living systems at all scales—from molecules and cells, to patient populations and ecosystems—through the application of computational methods. Readers include life and computational scientists, who can take the important findings presented here to the next level of discovery.
Research articles must be declared as belonging to a relevant section. More information about the sections can be found in the submission guidelines.
Research articles should model aspects of biological systems, demonstrate both methodological and scientific novelty, and provide profound new biological insights.
Generally, reliability and significance of biological discovery through computation should be validated and enriched by experimental studies. Inclusion of experimental validation is not required for publication, but should be referenced where possible. Inclusion of experimental validation of a modest biological discovery through computation does not render a manuscript suitable for PLOS Computational Biology.
Research articles specifically designated as Methods papers should describe outstanding methods of exceptional importance that have been shown, or have the promise to provide new biological insights. The method must already be widely adopted, or have the promise of wide adoption by a broad community of users. Enhancements to existing published methods will only be considered if those enhancements bring exceptional new capabilities.