Functional characterizations of thermosensitive TRPV channels from Holocephalan elephant shark, Callorhinchus milii, illuminate the ancestral thermosensory system in vertebrates.

IF 2.8 2区 生物学 Q2 BIOLOGY
Sumika Otake, Shigeru Saito, Xiaozhi Lin, Claire T Saito, Satomi Kohno, Wataru Takagi, Susumu Hyodo, Makoto Tominaga, Yoshinao Katsu
{"title":"Functional characterizations of thermosensitive TRPV channels from Holocephalan elephant shark, Callorhinchus milii, illuminate the ancestral thermosensory system in vertebrates.","authors":"Sumika Otake, Shigeru Saito, Xiaozhi Lin, Claire T Saito, Satomi Kohno, Wataru Takagi, Susumu Hyodo, Makoto Tominaga, Yoshinao Katsu","doi":"10.1242/jeb.249961","DOIUrl":null,"url":null,"abstract":"<p><p>Homeostasis and survival of various animal species have been affected by changes in environmental temperature, causing animals to evolve physiological systems for sensing ambient and body temperature. Temperature-sensitive transient receptor potential (TRP) channels have multimodal properties that are activated by physical stimuli such as temperature, as well as by various chemical substances. Our goal is to understand the diversity of the vertebrate thermosensory system by characterizing the temperature-sensitive TRPV channels of the elephant shark, which belongs to the holocephali of the cartilaginous fishes. Since elephant sharks are basal jawed vertebrates, analysis of elephant shark TRPs is critical to understanding the evolution of thermosensory systems in vertebrate lineages. We found that temperature stimulation activated elephant shark TRPVs in an electrophysiological analysis similar to the mammalian orthologue. The thermal activation threshold of elephant shark TRPV1 (31°C) was similar to the thresholds reported for several other fish species, but was much lower than that of mammalian orthologs. Strikingly, the elephant shark TRPV4 was a cooling-activated channel with a threshold of 20°C, whereas, in several tetrapods, it is activated by warmth. These results suggest that the temperature sensitivity of TRPV4 has changed in vertebrate evolutionary lineages. Furthermore, we also found the elephant shark possesses heat-evoked TRPV3, which has a threshold of 42°C, which is absent in more derived teleost fishes. Taken together, our findings elucidate that the vertebrate-type thermosensory system has already emerged in the common ancestor of jawed vertebrates, although their temperature sensing ranges were different from those of mammals.</p>","PeriodicalId":15786,"journal":{"name":"Journal of Experimental Biology","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Biology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1242/jeb.249961","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Homeostasis and survival of various animal species have been affected by changes in environmental temperature, causing animals to evolve physiological systems for sensing ambient and body temperature. Temperature-sensitive transient receptor potential (TRP) channels have multimodal properties that are activated by physical stimuli such as temperature, as well as by various chemical substances. Our goal is to understand the diversity of the vertebrate thermosensory system by characterizing the temperature-sensitive TRPV channels of the elephant shark, which belongs to the holocephali of the cartilaginous fishes. Since elephant sharks are basal jawed vertebrates, analysis of elephant shark TRPs is critical to understanding the evolution of thermosensory systems in vertebrate lineages. We found that temperature stimulation activated elephant shark TRPVs in an electrophysiological analysis similar to the mammalian orthologue. The thermal activation threshold of elephant shark TRPV1 (31°C) was similar to the thresholds reported for several other fish species, but was much lower than that of mammalian orthologs. Strikingly, the elephant shark TRPV4 was a cooling-activated channel with a threshold of 20°C, whereas, in several tetrapods, it is activated by warmth. These results suggest that the temperature sensitivity of TRPV4 has changed in vertebrate evolutionary lineages. Furthermore, we also found the elephant shark possesses heat-evoked TRPV3, which has a threshold of 42°C, which is absent in more derived teleost fishes. Taken together, our findings elucidate that the vertebrate-type thermosensory system has already emerged in the common ancestor of jawed vertebrates, although their temperature sensing ranges were different from those of mammals.

求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.50
自引率
10.70%
发文量
494
审稿时长
1 months
期刊介绍: Journal of Experimental Biology is the leading primary research journal in comparative physiology and publishes papers on the form and function of living organisms at all levels of biological organisation, from the molecular and subcellular to the integrated whole animal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信