Progression of experimental autoimmune encephalomyelitis in mice and neutrophil-mediated blood-brain barrier dysfunction requires non-muscle myosin light chain kinase.

IF 4.9 2区 医学 Q1 ENDOCRINOLOGY & METABOLISM
Richard S Beard, Brian A Hoettels, Jessica M McAllister, Jamie E Meegan, Travis S Wertz, Desiree A Self, Dylan E Hrkach, Daniel Greiner, Kristina Chapman, Nuria Villalba, Xiaoyuan Yang, Byeong J Cha, Cheryl L Jorcyk, Julia T Oxford, Mack H Wu, Sarah Y Yuan
{"title":"Progression of experimental autoimmune encephalomyelitis in mice and neutrophil-mediated blood-brain barrier dysfunction requires non-muscle myosin light chain kinase.","authors":"Richard S Beard, Brian A Hoettels, Jessica M McAllister, Jamie E Meegan, Travis S Wertz, Desiree A Self, Dylan E Hrkach, Daniel Greiner, Kristina Chapman, Nuria Villalba, Xiaoyuan Yang, Byeong J Cha, Cheryl L Jorcyk, Julia T Oxford, Mack H Wu, Sarah Y Yuan","doi":"10.1177/0271678X251318620","DOIUrl":null,"url":null,"abstract":"<p><p>Blood-brain barrier (BBB) dysfunction occurs in numerous central nervous system disorders. Unfortunately, a limited understanding of the mechanisms governing barrier function hinders the identification and assessment of BBB-targeted therapies. Previously, we found that non-muscle myosin light chain kinase (nmMLCK) negatively regulates the tight junction protein claudin-5 in brain microvascular endothelial cells (BMVECs) under inflammatory conditions. Here, we used complementary animal and primary cell co-culture models to further investigate nmMLCK and claudin-5 during neuroinflammation. We found that <i>nmMLCK</i>-knockout mice resisted experimental autoimmune encephalomyelitis (EAE), including paralysis, demyelination, neutrophil infiltration, and BBB dysfunction. However, transiently silencing claudin-5 culminated in a fulminant disease course. In parallel, we found that neutrophil-secreted factors triggered a biphasic loss in the barrier quality of wild-type BMVEC monolayers, plus pronounced neutrophil migration during the second phase. Conversely, <i>nmMLCK</i>-knockout monolayers resisted barrier dysfunction and neutrophil migration. Lastly, we found an inverse relationship between claudin-5 expression in BMVECs and neutrophil migration. Overall, our findings support a pathogenic role for nmMLCK in BMVECs during EAE that includes BBB dysfunction and neutrophil infiltration, reveal that claudin-5 contributes to the immune barrier properties of BMVECs, and underscore the harmful effects of claudin-5 loss during neuroinflammation.</p>","PeriodicalId":15325,"journal":{"name":"Journal of Cerebral Blood Flow and Metabolism","volume":" ","pages":"1203-1220"},"PeriodicalIF":4.9000,"publicationDate":"2025-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11806455/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cerebral Blood Flow and Metabolism","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/0271678X251318620","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/7 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"ENDOCRINOLOGY & METABOLISM","Score":null,"Total":0}
引用次数: 0

Abstract

Blood-brain barrier (BBB) dysfunction occurs in numerous central nervous system disorders. Unfortunately, a limited understanding of the mechanisms governing barrier function hinders the identification and assessment of BBB-targeted therapies. Previously, we found that non-muscle myosin light chain kinase (nmMLCK) negatively regulates the tight junction protein claudin-5 in brain microvascular endothelial cells (BMVECs) under inflammatory conditions. Here, we used complementary animal and primary cell co-culture models to further investigate nmMLCK and claudin-5 during neuroinflammation. We found that nmMLCK-knockout mice resisted experimental autoimmune encephalomyelitis (EAE), including paralysis, demyelination, neutrophil infiltration, and BBB dysfunction. However, transiently silencing claudin-5 culminated in a fulminant disease course. In parallel, we found that neutrophil-secreted factors triggered a biphasic loss in the barrier quality of wild-type BMVEC monolayers, plus pronounced neutrophil migration during the second phase. Conversely, nmMLCK-knockout monolayers resisted barrier dysfunction and neutrophil migration. Lastly, we found an inverse relationship between claudin-5 expression in BMVECs and neutrophil migration. Overall, our findings support a pathogenic role for nmMLCK in BMVECs during EAE that includes BBB dysfunction and neutrophil infiltration, reveal that claudin-5 contributes to the immune barrier properties of BMVECs, and underscore the harmful effects of claudin-5 loss during neuroinflammation.

小鼠实验性自身免疫性脑脊髓炎的进展和中性粒细胞介导的血脑屏障功能障碍需要非肌球蛋白轻链激酶。
血脑屏障(BBB)功能障碍发生在许多中枢神经系统疾病。不幸的是,对屏障功能控制机制的有限理解阻碍了bbb靶向治疗的识别和评估。先前,我们发现非肌球蛋白轻链激酶(nmMLCK)在炎症条件下负调控脑微血管内皮细胞(BMVECs)中的紧密连接蛋白cladin -5。在这里,我们使用互补动物和原代细胞共培养模型来进一步研究nmMLCK和claudin-5在神经炎症中的作用。我们发现nmmlck基因敲除小鼠可抵抗实验性自身免疫性脑脊髓炎(EAE),包括瘫痪、脱髓鞘、中性粒细胞浸润和血脑屏障功能障碍。然而,短暂的claudin-5沉默最终导致了暴发性疾病病程。同时,我们发现中性粒细胞分泌因子引发野生型BMVEC单层屏障质量的双期丧失,以及第二阶段明显的中性粒细胞迁移。相反,nmmlck敲除的单层细胞可以抵抗屏障功能障碍和中性粒细胞迁移。最后,我们发现claudin-5在bmvec中的表达与中性粒细胞迁移呈反比关系。总的来说,我们的研究结果支持了nmMLCK在EAE期间bmvec的致病作用,包括血脑屏障功能障碍和中性粒细胞浸润,揭示了claudin-5有助于bmvec的免疫屏障特性,并强调了claudin-5在神经炎症期间的有害影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cerebral Blood Flow and Metabolism
Journal of Cerebral Blood Flow and Metabolism 医学-内分泌学与代谢
CiteScore
12.00
自引率
4.80%
发文量
300
审稿时长
3 months
期刊介绍: JCBFM is the official journal of the International Society for Cerebral Blood Flow & Metabolism, which is committed to publishing high quality, independently peer-reviewed research and review material. JCBFM stands at the interface between basic and clinical neurovascular research, and features timely and relevant research highlighting experimental, theoretical, and clinical aspects of brain circulation, metabolism and imaging. The journal is relevant to any physician or scientist with an interest in brain function, cerebrovascular disease, cerebral vascular regulation and brain metabolism, including neurologists, neurochemists, physiologists, pharmacologists, anesthesiologists, neuroradiologists, neurosurgeons, neuropathologists and neuroscientists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信