Enhancing the quality of kinesthetic motor imagery for complex motor skills through simulated muscle activation color visualization: Evidence from time-frequency and functional connectivity analyses

IF 4.7 2区 医学 Q1 NEUROIMAGING
Xiaogang Ma, Bing Shi
{"title":"Enhancing the quality of kinesthetic motor imagery for complex motor skills through simulated muscle activation color visualization: Evidence from time-frequency and functional connectivity analyses","authors":"Xiaogang Ma,&nbsp;Bing Shi","doi":"10.1016/j.neuroimage.2025.121051","DOIUrl":null,"url":null,"abstract":"<div><div>It is well established that providing visual guidance within demonstration models positively influences the quality of kinesthetic motor imagery (kMI) for complex motor skills. Given that action execution and kMI share several underlying mechanisms, we hypothesize that color-coded visual cues indicating muscle activation in demonstration models can enhance the quality of kMI in the acquisition of complex motor skills. To test this hypothesis. We employed AnyBody Modeling System to develop demonstration model videos of complex motor skills. Thirty participants (mean age = 20.3 ± 0.6 years; 7 men and 8 women per group) were assigned to an experimental group, which engaged in kMI after viewing demonstration videos supplemented with simulated muscle activation color cues, or to a control group, which performed kMI following videos without such cues. All participants scored above 5 on the Motor Imagery Questionnaire-2 (MIQ-2). The vividness of kMI was assessed using the Vividness of Motor Imagery Questionnaire-2 (VMIQ-2). A 64-channel EEG cap was utilized for data acquisition. Changes in alpha and beta range oscillations during kMI were examined, and region of interest (ROI) analysis was conducted to extract the correlation coefficient matrix among kMI-related subcortical nuclei. Our results demonstrated that the vividness of kMI in the experimental group was significantly higher than that in the control group by 19.9 % (<em>P</em> &lt; 0.05). Conversely, alpha event-related synchronization (ERS) in the parietal and occipital regions, as well as ERS in the frontal, central, and temporal regions, were significantly lower in the experimental group compared to the control group. The source-functional connectivity results revealed that the primary differences between the experimental and control groups were concentrated between the left V1 and right V1, as well as among the posterior parietal cortex (PPC), dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1). In conclusion, the demonstration model, which incorporates simulated muscle activation and color visualization, enhances the vividness of kMI in complex motor skills. This enhancement is associated with the selective inhibition of the frontal, central, and temporal brain regions, the activation of the occipital and parietal regions within brain rhythmic activity, and increased information flow between the occipital-parietal and frontal-parietal brain regions.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"309 ","pages":"Article 121051"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925000539","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

It is well established that providing visual guidance within demonstration models positively influences the quality of kinesthetic motor imagery (kMI) for complex motor skills. Given that action execution and kMI share several underlying mechanisms, we hypothesize that color-coded visual cues indicating muscle activation in demonstration models can enhance the quality of kMI in the acquisition of complex motor skills. To test this hypothesis. We employed AnyBody Modeling System to develop demonstration model videos of complex motor skills. Thirty participants (mean age = 20.3 ± 0.6 years; 7 men and 8 women per group) were assigned to an experimental group, which engaged in kMI after viewing demonstration videos supplemented with simulated muscle activation color cues, or to a control group, which performed kMI following videos without such cues. All participants scored above 5 on the Motor Imagery Questionnaire-2 (MIQ-2). The vividness of kMI was assessed using the Vividness of Motor Imagery Questionnaire-2 (VMIQ-2). A 64-channel EEG cap was utilized for data acquisition. Changes in alpha and beta range oscillations during kMI were examined, and region of interest (ROI) analysis was conducted to extract the correlation coefficient matrix among kMI-related subcortical nuclei. Our results demonstrated that the vividness of kMI in the experimental group was significantly higher than that in the control group by 19.9 % (P < 0.05). Conversely, alpha event-related synchronization (ERS) in the parietal and occipital regions, as well as ERS in the frontal, central, and temporal regions, were significantly lower in the experimental group compared to the control group. The source-functional connectivity results revealed that the primary differences between the experimental and control groups were concentrated between the left V1 and right V1, as well as among the posterior parietal cortex (PPC), dorsolateral prefrontal cortex (DLPFC), and primary motor cortex (M1). In conclusion, the demonstration model, which incorporates simulated muscle activation and color visualization, enhances the vividness of kMI in complex motor skills. This enhancement is associated with the selective inhibition of the frontal, central, and temporal brain regions, the activation of the occipital and parietal regions within brain rhythmic activity, and increased information flow between the occipital-parietal and frontal-parietal brain regions.
求助全文
约1分钟内获得全文 求助全文
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信